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What is Dynamic Programming (DP)?

Basic DP definition

» Dynamic: sequential or temporal problem structure

» Programming: mathematical optimization, i.e., numerical solutions

Further characteristics:

» DP is a collection of algorithms to solve MDPs and neighboring
problems.

» We will focus only on finite MDPs.
> In case of continuous action/state space: apply quantization.

» Use of value functions to organize and structure the search for an
optimal policy.

» Breaks problems into subproblems and solves them.
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Requirements for DP

DP can be applied to problems with the following characteristics.
» Optimal substructure:
» Principle of optimality applies.
» Optimal solution can be derived from subproblems.
» Overlapping subproblems:

> Subproblems recur many times.
» Hence, solutions can be cached and reused.

How is that connected to MDPs?
» MDPs satisfy above's properties:

» Bellman equation provides recursive decomposition.
» Value function stores and reuses solutions.
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Example: DP vs. Exhaustive Search (1)

1= Rheda-
eval = 0 Wiedenbriick Gltersloh

Paderborn Bielefeld

Horn-Bad Detmold
Meinberg

S

Fig. 1.1: Shortest path problem to travel from Paderborn to Bielefeld: Eshaustive
search requires 14 travel segment evaluations since every possible travel route is
evaluated independently.
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Example: DP vs. Exhaustive Search (2)

1= Rheda-
eval = 0 Wiedenbriick Gltersloh

Paderborn Bielefeld

Horn-Bad Detmold
Meinberg

S

Fig. 1.2: Shortest path problem to travel from Paderborn to Bielefeld: DP
requires only 10 travel segment evaluations in order to calculate the optimal
travel policy due to the reuse of subproblem results.
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Utility of DP in the RL Context

DP is used for iterative planning (i.e., model-based prediction and control)
in an MDP.

» Prediction:

» Input: MDP (S, A,P,R,v) and policy
» Output: (estimated) value function 0, =~ v,
» Control:

» Input: MDP (S, A, P,R,7)
» Output: (estimated) optimal value function 9 = v or policy #* ~ 7*

In both applications DP requires full knowledge of the MDP structure.

» Feasibility in real-world engineering applications (model vs. system) is
therefore limited.

» But: following DP concepts are largely used in modern data-driven
RL algorithms.
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Policy Evaluation Background (1)

» Problem: evaluate a given policy 7 to predict v;.
» Recap: Bellman equation for s; € S is given as
vr(sk) = Ex [Gi|Sk = sk,
= Ex [Rrq1 +7Gry1|Sk = sil,
= Ex [Rkt1 + Y0r(Sk+1)|Sk = sk] .
» Or in matrix form:
vs =15+ 7P,
gh RT pli o Pla| |oT
B . . .
R

T T ™
v Pr1 0 Pnn Un

33

» Solving the Bellman equation for v, requires handling a linear
equation system with n unknowns (i.e., number of states).

» Remember that the reward function R might also contain stochastic
influences depending on the MDP structure
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Policy Evaluation Background (2)

» Problem: directly calculating v, is numerically costly for
high-dimensional state spaces (e.g., by matrix inversion).

> General idea: apply iterative approximations 9;(sg) = v;(si) of vr(sk)
with decreasing errors:

|vi(sk) — vall =0 for i=1,2,3,... (1.1)

» The Bellman equation in matrix form can be rewritten as:

I —~PL,) vs = r5 . (1.2)
—_—— =~
A ¢ b

» To iteratively solve this linear equation A{ = b, one can apply
numerous methods such as
» General gradient descent,
» Richardson iteration,
» Krylov subspace methods.
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Richardson Iteration (1)

In the MDP context, the Richardson iteration became the default solution
approach to iteratively solve:

AC =0.
The Richardson iteration is
Civ1 = Ci +w(b— AG) (1.3)

with w being a scalar parameter that has to be chosen such that the
sequence (; converges. To choose w we inspect the series of
approximation errors e; = {; — ¢ and apply it to (1.3):

eir1=¢€ —wAe; = (I —wA)e,. (1.4)
To evaluate convergence we inspect the following norm:
leitilloe = II(T —wA) el - (1.5)
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Richardson Iteration (2)

Since any induced matrix norm is sub-multiplicative, we can approximate
(1.5) by the inequality:

leitilloe < I —wA)[l [leill - (1.6)
Hence, the series converges if
(I —wA)| <1 (1.7)
Inserting from (1.2) leads to:
I(I(1 = w) +wrPly)lo < 1. (1.8)
For w =1 we receive:
TP < 1. (1.9)
Since the row elements of P7,, always sum up to 1,
7<1 (1.10)

follows. Hence, when discounting the Richardson iteration always

converges for MDPs even if we assume w = 1.
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lterative Policy Evaluation by Richardson Iteration (1)

General form for any s, € S at iteration ¢ is given as:

vig1(sg) = Z‘ir(ak|sk) RE +~ Z Peavi(sks1) | - (1.11)

ar€A sk+1eS

Matrix form then is:

Vip1(xg) < xp

Uk
k1.

Ui (Th+1) <—xk+1d O d b

Fig. 1.3: Backup diagram for iterative policy evaluation
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lterative Policy Evaluation by Richardson Iteration (2)

» During one Richardson iteration the 'old’ value of s is replaced with
a 'new’ value from the 'old" values of the successor state sy1.

> Update v;11(sk) from v;(sgy1), see Fig. 1.3.
> Updating estimates (v;41) on the basis of other estimates (v;) is often
called bootstrapping.

> The Richardson iteration can be interpreted as a gradient descent
algorithm for solving (1.2).

» This leads to synchronous, full backups of the entire state space S.

P> Also called expected update because it is based on the expectation
over all possible next states (utilizing full knowledge).

P In subsequent lectures, the expected update will be supplemented by
data-driven samples from the environment.
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Iterative Policy Evaluation Example: Forest Tree MDP

Let’s reuse the forest tree MDP example with fifty-fifty policy and
discount factor v = 0.8 plus disaster probability av = 0.2:

11— 14+o
O » 0.5
~ 10 0 55 52 ~ |1
ss’ T l-a 1+af > S —
0 0 S e 2
0 0 0 1 0
i |vi(s=1) | vi(s=2) | vi(s=3) | vi(s=4)
0 |0 0 0 0
1 |05 1 2 0
2 10.82 1.64 2.64 0
3 |1.03 1.85 2.85 0
oo | 1.12 1.94 2.94 0
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Tab. 1.1: Policy evaluation by Richardson iteration (1.12) for forest tree MDP
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Variant: In-Place Updates

Instead of applying (1.12) to the entire vector v3 ;41 in 'one shot’
(synchronous backup), an elementwise in-place version of the policy
evaluation can be carried out:
input: full model of the MDP, i.e., (S, A,P,R,~) including policy 7
parameter: § > 0 as accuracy termination threshold
init: vo(s) Vs € S arbitrary except vg(s) = 0 if s is terminal
repeat
A+ 0;
for Vs, € S do
0 < 0(sk);
0(sk)  apearmlarlse) (RE+7 5, esPhoblse));
A+ max (A, |0 — 0(sk)|);
until A < §;

Algo. 1.1: lterative policy evaluation using in-place updates (output:
estimate of v%)
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In-Place Policy Evaluation Updates for Forest Tree MDP

» In-place algorithms allow to update states in a beneficial order.

> May converge faster than regular Richardson iteration if state update
order is chosen wisely (sweep through state space).

» For forest tree MDP: reverse order, i.e., start with x = 4.

» As can be seen in Tab. 1.2 the in-place updates especially converge
faster for the 'early states’.

Paul Swoboda

RL Lecture 03

i |v(x=1) | vi(x=2) | vi(zr =3) | vi(x=4)
0 |0 0 0 0
1 1.03 1.64 2 0
2 1.09 1.85 2.64 0
3 1.11 191 2.85 0
oo | 1.12 1.94 2.94 0

Tab. 1.2: In-place updates for forest tree MDP
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General Idea on Policy Improvement

> If we know v, of a given MDP, how to improve the policy?
» The simple idea of policy improvement is:
> Consider a new (non-policy conform) action a # m(sg).
> Follow thereafter the current policy 7.
» Check the action-value of this 'new move'. If it is better than the 'old’
value, take it.

qﬂ(Sk,ak) =K [Rk-Jrl + ’YUW(SkJrl)’Sk = sy, A = ak] . (1.13)

Theorem 1.1: Policy improvement

If for any deterministic policy pair w and 7/
0r (8,7 (5)) > va(s) VseS (1.14)

applies, then the policy " must be as good as or better than 7. Hence, it
obtains greater or equal expected return

v (8) > ve(s) VseS. (1.15)
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Greedy Policy Improvement (1)

» So far, policy improvement addressed only changing the policy at a
single state.

> Now, extend this scheme to all states by selecting the best action
according to ¢r(sg,ax) in every state (greedy policy improvement):

7' (s1,) = arg max q, (sg, ag),
ap€A
= arg max E [Rk+1 + f)//Uﬂ—(Sk-Jrl)‘Sk = Sk, Ak = ak] ,
ar€A (1.16)

= argmax RJ + 7 Z Pror(Skt1) -
ar€A Skp1€ES
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Greedy Policy Improvement (2)

>

| 2

Each greedy policy improvement takes the best action in a one-step
look-ahead search and, therefore, satisfies Theo. 1.1.

If after a policy improvement step v, (sx) = vy (sk) applies, it follows:
vr (s8) = max B[Ry + yom (Si1)| Sk = 5w, A = ail,
k
1.17
= g:gi(le +y Z pgswif(skJrl) . ( )

Sk+1 €S

This is the Bellman optimality equation, which guarantees that

7’ = m must be optimal policies.

Although proof for policy improvement theorem was presented for
deterministic policies, transfer to stochastic policies 7(ag|sg) is
possible.

Takeaway message: policy improvement theorem guarantees finding
optimal policies in finite MDPs (e.g., by DP).

Paul Swoboda RL Lecture 03
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Concept of Policy Iteration

» Policy iteration combines the previous policy evaluation and policy
improvement in an iterative sequence:

T = Ugg —> ML —> Ugy —> =T —> Upes (1.18)

» Evaluate — improve — evaluate — improve ...

» In the 'classic’ policy iteration, each policy evaluation step in (1.18) is
fully executed, i.e., for each policy 7; an exact estimate of vy, is
provided either by iterative policy evaluation with a sufficiently high
number of steps or by any other method that fully solves (1.2).
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Policy Iteration Example: Forest Tree MDP (1)

Small Medium Large Ll —«
_Nu=w_ ol —a/ Nu=w_ —a /[  u=w
r=1"—5 T=2]"—5 T=3F—
«@ o
r=1\u=c u=clr=2 u=c 1r=3

r=4

Gone

» Two actions possible in each state:

> Wait a = w: let the tree grow.
» Cut a = c: gather the wood.
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Policy Iteration Example: Forest Tree MDP (2)

Assume a = 0.2 and v = 0.8 and start with 'tree hater’ initial policy:
(1] Wozﬁ(ak:C‘Sk) Vs € S.
@ Policy evaluation: vg® =[1 2 3 0
© Greedy policy improvement:

]T

m1(s) = arg H}fxE [Ri41 + Yo (Sk1)|Sk = sk, Ax = ag],
ar €

= {m(ax = wlsg = 1), m(ay, = c|s, = 2),7(ar = c|s, = 3)}
Q@ Policy evaluation: vg! = [1.28 2 3 O}T
© Greedy policy improvement:

ma(sy) = arg foE [Riy1 + Y, (Skt1)[Sk = sk, Ax = ag],
ap€

= {m(ar = wlsy = 1), m(ar = c|s, = 2), m(ax = c|s = 3)},
= m1(sk)
= 7‘('*
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Policy Iteration Example: Forest Tree MDP (3)

Assume o = 0.2 and v = 0.8 and start with 'tree lover' initial policy:
(] Wozﬁ(ak:W‘Sk) Vs € S.
@ Policy evaluation: vg’ = [1.14 1.78 2.78 0
© Greedy policy improvement:

]T

m1(s) = arg H}fxE [Ri41 + Yo (Sk1)|Sk = sk, Ax = ag],
ar €

= {m(ax = wlsg = 1), w(ay, = c|s, = 2),7(ar = c|s, = 3)}
Q@ Policy evaluation: vg! = [1.28 2 3 O}T
© Greedy policy improvement:

ma(s) = arg foE [Ri41 + Y, (Skt1)[Sk = sk, Ax = ag],
ap€

= {m(ar = wlsy = 1), m(ar = c|s, = 2), m(ax = c|s = 3)},
= m1(sk)
= 7‘('*

Paul Swoboda RL Lecture 03
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Policy Iteration Example: Jack’s Car Rental (1)

P

-

» States: Two rental locations, maximum of 20 cars each

» Actions: Move up to 5 cars between locations overnight
> Reward:
» +10 $ for each car rented (if available at location)
» -2 $ for each overnight car transfer
» Discount: v =10.9
» Dynamics: Cars returned and requested randomly following Poisson
distribution
> Py(n) = i‘l—?e’)‘
> P, (n) = probability of observing n events with mean event rate A
> 1st location: Areq. = 3, Aret. =3
> 2nd location: Areq. = 4, Aret, = 2
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Policy Iteration Example: Jack’s Car Rental (2)

20

T 77
[T 77>
22 %

i

1777 L o iy
PAPLLIIILT AT
8

7

#Cars at first location

#
Cars o Seg, &
] r—‘ == D"d/OCa, 20 %o”

lion

O #Cars at second location 2

0

Fig. 1.4: Sequence of policies found by policy iteration including optimal state
value after termination (source: R. Sutton and G. Barto, Reinforcement learning:
an introduction, 2018, CC BY-NC-ND 2.0)
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Value lteration (1)

>

| 2

Policy iteration involves full policy evaluation steps between policy
improvements.
In large state-space MDPs the full policy evaluation may be
numerically very costly.
Using a limited number of iterative policy evaluations steps and then
apply policy improvement may speed up the entire DP process.
Value iteration: One step iterative policy evaluation followed by policy
improvement.
Allows simple update rule which combines policy improvement with
truncated policy evaluation:
vit1(sk) = éngﬁE [Ri41 + vvi(Skt1)|Sk = sk, Ax = ag],
k
1.19
= max R + 7 Z PagVi(Skt1) - (1.19)
ap€A
Sk+1€$

Paul Swoboda RL Lecture 03
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Value lteration (2)

input: full model of the MDP, i.e., (S, 4,P,R,7)
parameter: ¢ > 0 as accuracy termination threshold
init: vo(x)Va € S arbitrary except vo(x) = 0 if x is terminal
repeat
A+ 0;
for Vs, € S do
0 0(sk);
0(sk)  maxgea (RS +7 54, es Plyd(ski1) )
A + max (A, |0 —0(s)|);
until A < §;
output: Deterministic policy m ~ 7*, such that

m(sk) ¢ argmax,, ¢ 4 (Rg + 728k+165pgs,@(sk+1));

Algo. 1.2: Value iteration (note: compared to policy iteration, value
iteration doesn't require an initial policy but only a state-value guess)
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Value lteration for Forest Tree MDP

Small Medium Large _l—«

» Assume again a = 0.2 and v = 0.8.

» Similar to in-place update policy evaluation, reverse order and start
value iteration with z = 4.

» As shown in Tab. 1.3 value iteration converges in one step (for the
given problem) to the optimal state-value.

i [vie=1) | vi(z=2) | vi(z=3) | vi(x =4)

0|0 0 0 0
1]1.28 2 3 0
*11.28 2 3 0

Tab. 1.3: Value iteration for forest tree MDP
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Summarizing DP Algorithms

» All DP algorithms are based on the state-value v(x).
» Complexity is O(m - n?) for m actions and n states.
> Evaluate all n? state transitions while considering up to m actions per
state.
» Could be also applied to action-values ¢(z,u).
> Complexity is inferior with O(m? - n?).
> There are up to m? action-values which require n? state transition
evaluations each.

Problem H Relevant Equations \ Algorithm

prediction Bellman expectation eq. policy evaluation
Bellman expectation eq. &
greedy policy improvement
control Bellman optimality eq. value iteration

control policy iteration

Tab. 1.4: Short overview addressing the treated DP algorithms
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Asynchronous DP

» DP algorithms considered so far used synchronous backups:

» In one iteration the entire state space is updated.

» May be computational expensive for large MDPs.

P> Some state-values or policy parts may converge faster than other but
are updated as often as slowly converging states.

» In contrast, asynchronous backups update states individually in an
(arbitrary) order:

» Choose smart order to achieve faster overall convergence rate.

P> Some states may be updated more frequently than others.

» Overall algorithms converges if all states are still visited to some extent
(important requirement to ensure convergence).

» Simple example: in-place policy evaluation where only a subset of all
states are updated each iterations (cf. Algo. 1.1).
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Asynchronous DP: Prioritized Sweeping

» Use magnitude of Bellman error as an indicator which state should be
updated next:

argmax max | RS + Z Poavi(sk1) | —wvilsg)| - (1.20)
skes | Sp+1€S

» Update the state with the largest Bellman error first.

» Build up a priority queue of most relevant states by refreshing the
Bellman error after each state update.
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Asynchronous DP: Real-Time Updates

» Update those states which are frequently visited by the agent.
P Utilizes agent's experience to guide the asynchronous DP updates.
> After each time step (si,ay,rip4+1) update si:

Ui(sk)emaﬁ RE+ Z Pagvi(sk+1) | - (1.21)
e Sk+1€S

Irrelevant States:
unreachable from any start state
Start States under any optimal policy

Relevant States
reachable from some start state
under some optimal policy

Fig. 1.5: Real-time DP updates focus on reachable states (source: R. Sutton and
G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
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Generalized Policy Iteration (GPI)

» Almost all RL methods are well-described as GPI.
» Push-pull: Improving the policy will deteriorate value estimation.

» Well balanced trade-off between evaluating and improving is required.

evaluation
Vs vg

a0 |4
7~ greedy (V)

improvement
. Vs, Ty

Ty —>.U*

Fig. 1.6: Interpreting generalized policy iteration to switch back and forth

between (arbitrary) evaluations and improvement steps (source: R. Sutton and G.

Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
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Curse of Dimensionality

» DP is much more efficient than an exhaustive search over all n states
and m actions in finite MDPs in order to find an optimal policy.

» Exhaustive search for deterministic policies: m"™ evaluations.
» DP results in polynomial complexity regarding m and n.
» Nevertheless, DP uses full-width backups:
» For each state update, every successor state and action is considered.
» While utilizing full knowledge of the MDP structure.
» Hence, DP can be effective up to medium-sized MDPs (i.e., million
states)
» For large problems DP suffers from the curse of dimensionality:

» Number of finite states n grows exponentially with the number of state
variables.

» Also: if continuous variables need quantization typically a large number
of states results.

» Single state update may become computational infeasible.
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Summary: What You've Learned Today

DP is applicable for prediction and control problems in MDPs.

vy

But requires always full knowledge about the environment (i.e., it is a
model-based solution also called planning).

DP is more efficient than exhaustive search.

But suffers from the curse of dimensionality for large MDPs.
(Iterative) policy evaluations and (greedy) improvements solve MDPs.
Both steps can be combined via value iteration.

This idea of (generalized) policy iteration is a basic scheme of RL.

Implementing DP algorithms comes with many degrees of freedom.

vVVvVvyVvyVvyVvyYvyy

For example how to order the state updates (asyn. vs. sync.).
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