
Lecture 03: Dynamic Programming

Paul Swoboda

Paul Swoboda RL Lecture 03 1

https://ei.uni-paderborn.de/lea/


Table of Contents

1 Introduction

2 Policy Evaluation

3 Policy Improvement

4 Policy and Value Iteration

5 Further Aspects

Paul Swoboda RL Lecture 03 2



What is Dynamic Programming (DP)?

Basic DP definition
▶ Dynamic: sequential or temporal problem structure

▶ Programming: mathematical optimization, i.e., numerical solutions

Further characteristics:
▶ DP is a collection of algorithms to solve MDPs and neighboring

problems.
▶ We will focus only on finite MDPs.
▶ In case of continuous action/state space: apply quantization.

▶ Use of value functions to organize and structure the search for an
optimal policy.

▶ Breaks problems into subproblems and solves them.

Paul Swoboda RL Lecture 03 3



Requirements for DP

DP can be applied to problems with the following characteristics.
▶ Optimal substructure:

▶ Principle of optimality applies.
▶ Optimal solution can be derived from subproblems.

▶ Overlapping subproblems:
▶ Subproblems recur many times.
▶ Hence, solutions can be cached and reused.

How is that connected to MDPs?
▶ MDPs satisfy above’s properties:

▶ Bellman equation provides recursive decomposition.
▶ Value function stores and reuses solutions.

Paul Swoboda RL Lecture 03 4



Example: DP vs. Exhaustive Search (1)

Fig. 1.1: Shortest path problem to travel from Paderborn to Bielefeld: Eshaustive
search requires 14 travel segment evaluations since every possible travel route is

evaluated independently.

Paul Swoboda RL Lecture 03 5



Example: DP vs. Exhaustive Search (2)

Fig. 1.2: Shortest path problem to travel from Paderborn to Bielefeld: DP
requires only 10 travel segment evaluations in order to calculate the optimal

travel policy due to the reuse of subproblem results.

Paul Swoboda RL Lecture 03 6



Utility of DP in the RL Context

DP is used for iterative planning (i.e., model-based prediction and control)
in an MDP.
▶ Prediction:

▶ Input: MDP ⟨S,A,P ,R, γ⟩ and policy π
▶ Output: (estimated) value function v̂π ≈ vπ

▶ Control:
▶ Input: MDP ⟨S,A,P ,R, γ⟩
▶ Output: (estimated) optimal value function v̂∗π ≈ v∗π or policy π̂∗ ≈ π∗

In both applications DP requires full knowledge of the MDP structure.

▶ Feasibility in real-world engineering applications (model vs. system) is
therefore limited.

▶ But: following DP concepts are largely used in modern data-driven
RL algorithms.

Paul Swoboda RL Lecture 03 7



Table of Contents

1 Introduction

2 Policy Evaluation

3 Policy Improvement

4 Policy and Value Iteration

5 Further Aspects

Paul Swoboda RL Lecture 03 8



Policy Evaluation Background (1)

▶ Problem: evaluate a given policy π to predict vπ.
▶ Recap: Bellman equation for sk ∈ S is given as

vπ(sk) = Eπ [Gk|Sk = sk] ,

= Eπ [Rk+1 + γGk+1|Sk = sk] ,

= Eπ [Rk+1 + γvπ(Sk+1)|Sk = sk] .

▶ Or in matrix form:

vπ
S = rπS + γPπ

ss′v
π
S ,v

π
1
...
vπn

 =

R
π
1
...
Rπ

n

+ γ

p
π
11 · · · pπ1n
...

...
pπn1 · · · pπnn


v

π
1
...
vπn

 .

▶ Solving the Bellman equation for vπ requires handling a linear
equation system with n unknowns (i.e., number of states).

▶ Remember that the reward function Rπ
s might also contain stochastic

influences depending on the MDP structure
Paul Swoboda RL Lecture 03 9



Policy Evaluation Background (2)

▶ Problem: directly calculating vπ is numerically costly for
high-dimensional state spaces (e.g., by matrix inversion).

▶ General idea: apply iterative approximations v̂i(sk) = vi(sk) of vπ(sk)
with decreasing errors:

∥vi(sk)− vπ∥∞ → 0 for i = 1, 2, 3, . . . (1.1)

▶ The Bellman equation in matrix form can be rewritten as:

(I − γPπ
ss′)︸ ︷︷ ︸

A

vπ
S︸︷︷︸
ζ

= rπS︸︷︷︸
b

. (1.2)

▶ To iteratively solve this linear equation Aζ = b, one can apply
numerous methods such as
▶ General gradient descent,
▶ Richardson iteration,
▶ Krylov subspace methods.

Paul Swoboda RL Lecture 03 10



Richardson Iteration (1)

In the MDP context, the Richardson iteration became the default solution
approach to iteratively solve:

Aζ = b.

The Richardson iteration is

ζi+1 = ζi + ω(b−Aζi) (1.3)

with ω being a scalar parameter that has to be chosen such that the
sequence ζi converges. To choose ω we inspect the series of
approximation errors ei = ζi − ζ and apply it to (1.3):

ei+1 = ei − ωAei = (I − ωA) ei. (1.4)

To evaluate convergence we inspect the following norm:

∥ei+1∥∞ = ∥(I − ωA) ei∥∞ . (1.5)

Paul Swoboda RL Lecture 03 11



Richardson Iteration (2)

Since any induced matrix norm is sub-multiplicative, we can approximate
(1.5) by the inequality:

∥ei+1∥∞ ≤ ∥(I − ωA)∥∞ ∥ei∥∞ . (1.6)

Hence, the series converges if

∥(I − ωA)∥∞ < 1. (1.7)

Inserting from (1.2) leads to:

∥(I(1− ω) + ωγPπ
ss′)∥∞ < 1. (1.8)

For ω = 1 we receive:
γ ∥(Pπ

ss′)∥∞ < 1. (1.9)

Since the row elements of Pπ
ss′ always sum up to 1,

γ < 1 (1.10)

follows. Hence, when discounting the Richardson iteration always
converges for MDPs even if we assume ω = 1.

Paul Swoboda RL Lecture 03 12



Iterative Policy Evaluation by Richardson Iteration (1)

General form for any sk ∈ S at iteration i is given as:

vi+1(sk) =
∑
ak∈A

π(ak|sk)

Ra
s + γ

∑
sk+1∈S

pass′vi(sk+1)

 . (1.11)

Matrix form then is:

vπ
S,i+1 = rπS + γPπ

ss′v
π
S,i . (1.12)

Fig. 1.3: Backup diagram for iterative policy evaluation

Paul Swoboda RL Lecture 03 13



Iterative Policy Evaluation by Richardson Iteration (2)

▶ During one Richardson iteration the ’old’ value of sk is replaced with
a ’new’ value from the ’old’ values of the successor state sk+1.
▶ Update vi+1(sk) from vi(sk+1), see Fig. 1.3.
▶ Updating estimates (vi+1) on the basis of other estimates (vi) is often

called bootstrapping.

▶ The Richardson iteration can be interpreted as a gradient descent
algorithm for solving (1.2).

▶ This leads to synchronous, full backups of the entire state space S.
▶ Also called expected update because it is based on the expectation

over all possible next states (utilizing full knowledge).

▶ In subsequent lectures, the expected update will be supplemented by
data-driven samples from the environment.

Paul Swoboda RL Lecture 03 14



Iterative Policy Evaluation Example: Forest Tree MDP

Let’s reuse the forest tree MDP example with fifty-fifty policy and
discount factor γ = 0.8 plus disaster probability α = 0.2:

Pπ
ss′ =


0 1−α

2 0 1+α
2

0 0 1−α
2

1+α
2

0 0 1−α
2

1+α
2

0 0 0 1

 , rπS =


0.5
1
2
0

 .

i vi(s = 1) vi(s = 2) vi(s = 3) vi(s = 4)

0 0 0 0 0
1 0.5 1 2 0
2 0.82 1.64 2.64 0
3 1.03 1.85 2.85 0
...

...
...

...
...

∞ 1.12 1.94 2.94 0

Tab. 1.1: Policy evaluation by Richardson iteration (1.12) for forest tree MDP

Paul Swoboda RL Lecture 03 15



Variant: In-Place Updates

Instead of applying (1.12) to the entire vector vπ
S,i+1 in ’one shot’

(synchronous backup), an elementwise in-place version of the policy
evaluation can be carried out:

input: full model of the MDP, i.e., ⟨S,A,P ,R, γ⟩ including policy π
parameter: δ > 0 as accuracy termination threshold
init: v0(s)∀ s ∈ S arbitrary except v0(s) = 0 if s is terminal
repeat

∆← 0;
for ∀ sk ∈ S do

ṽ ← v̂(sk);

v̂(sk)←
∑

ak∈A π(ak|sk)
(
Ra

s + γ
∑

sk+1∈S pass′ v̂(sk+1)
)
;

∆← max (∆, |ṽ − v̂(sk)|);
until ∆ < δ;

Algo. 1.1: Iterative policy evaluation using in-place updates (output:
estimate of vπ

S)

Paul Swoboda RL Lecture 03 16



In-Place Policy Evaluation Updates for Forest Tree MDP

▶ In-place algorithms allow to update states in a beneficial order.
▶ May converge faster than regular Richardson iteration if state update

order is chosen wisely (sweep through state space).
▶ For forest tree MDP: reverse order, i.e., start with x = 4.
▶ As can be seen in Tab. 1.2 the in-place updates especially converge

faster for the ’early states’.

i vi(x = 1) vi(x = 2) vi(x = 3) vi(x = 4)

0 0 0 0 0
1 1.03 1.64 2 0
2 1.09 1.85 2.64 0
3 1.11 1.91 2.85 0
...

...
...

...
...

∞ 1.12 1.94 2.94 0

Tab. 1.2: In-place updates for forest tree MDP

Paul Swoboda RL Lecture 03 17



Table of Contents

1 Introduction

2 Policy Evaluation

3 Policy Improvement

4 Policy and Value Iteration

5 Further Aspects

Paul Swoboda RL Lecture 03 18



General Idea on Policy Improvement

▶ If we know vπ of a given MDP, how to improve the policy?
▶ The simple idea of policy improvement is:

▶ Consider a new (non-policy conform) action a ̸= π(sk).
▶ Follow thereafter the current policy π.
▶ Check the action-value of this ’new move’. If it is better than the ’old’

value, take it.

qπ(sk, ak) = E [Rk+1 + γvπ(Sk+1)|Sk = sk, Ak = ak] . (1.13)

Theorem 1.1: Policy improvement

If for any deterministic policy pair π and π′

qπ(s, π
′(s)) ≥ vπ(s) ∀s ∈ S (1.14)

applies, then the policy π′ must be as good as or better than π. Hence, it
obtains greater or equal expected return

vπ′(s) ≥ vπ(s) ∀s ∈ S. (1.15)

Paul Swoboda RL Lecture 03 19



Greedy Policy Improvement (1)

▶ So far, policy improvement addressed only changing the policy at a
single state.

▶ Now, extend this scheme to all states by selecting the best action
according to qπ(sk, ak) in every state (greedy policy improvement):

π′(sk) = argmax
ak∈A

qπ(sk, ak),

= argmax
ak∈A

E [Rk+1 + γvπ(Sk+1)|Sk = sk, Ak = ak] ,

= argmax
ak∈A

Ra
s + γ

∑
sk+1∈S

pass′vπ(sk+1) .

(1.16)

Paul Swoboda RL Lecture 03 20



Greedy Policy Improvement (2)

▶ Each greedy policy improvement takes the best action in a one-step
look-ahead search and, therefore, satisfies Theo. 1.1.

▶ If after a policy improvement step vπ(sk) = vπ′(sk) applies, it follows:

vπ′(sk) = max
ak∈A

E [Rk+1 + γvπ′(Sk+1)|Sk = sk, Ak = ak] ,

= max
ak∈A

Ra
s + γ

∑
sk+1∈S

pass′vπ′(sk+1) .
(1.17)

▶ This is the Bellman optimality equation, which guarantees that
π′ = π must be optimal policies.

▶ Although proof for policy improvement theorem was presented for
deterministic policies, transfer to stochastic policies π(ak|sk) is
possible.

▶ Takeaway message: policy improvement theorem guarantees finding
optimal policies in finite MDPs (e.g., by DP).

Paul Swoboda RL Lecture 03 21



Table of Contents

1 Introduction

2 Policy Evaluation

3 Policy Improvement

4 Policy and Value Iteration

5 Further Aspects

Paul Swoboda RL Lecture 03 22



Concept of Policy Iteration

▶ Policy iteration combines the previous policy evaluation and policy
improvement in an iterative sequence:

π0 → vπ0 → π1 → vπ1 → · · ·π∗ → vπ∗ (1.18)

▶ Evaluate → improve → evaluate → improve ...

▶ In the ’classic’ policy iteration, each policy evaluation step in (1.18) is
fully executed, i.e., for each policy πi an exact estimate of vπi is
provided either by iterative policy evaluation with a sufficiently high
number of steps or by any other method that fully solves (1.2).

Paul Swoboda RL Lecture 03 23



Policy Iteration Example: Forest Tree MDP (1)

Small Medium Large

Gone

▶ Two actions possible in each state:
▶ Wait a = w: let the tree grow.
▶ Cut a = c: gather the wood.

Paul Swoboda RL Lecture 03 24



Policy Iteration Example: Forest Tree MDP (2)

Assume α = 0.2 and γ = 0.8 and start with ’tree hater’ initial policy:
1 π0 = π(ak = c|sk) ∀sk ∈ S.
2 Policy evaluation: vπ0

S =
[
1 2 3 0

]T
3 Greedy policy improvement:

π1(sk) = argmax
ak∈A

E [Rk+1 + γvπ0(Sk+1)|Sk = sk, Ak = ak] ,

= {π(ak = w|sk = 1), π(ak = c|sk = 2), π(ak = c|sk = 3)}

4 Policy evaluation: vπ1
S =

[
1.28 2 3 0

]T
5 Greedy policy improvement:

π2(sk) = argmax
ak∈A

E [Rk+1 + γvπ1(Sk+1)|Sk = sk, Ak = ak] ,

= {π(ak = w|sk = 1), π(ak = c|sk = 2), π(ak = c|sk = 3)} ,
= π1(sk)

= π∗

Paul Swoboda RL Lecture 03 25



Policy Iteration Example: Forest Tree MDP (3)

Assume α = 0.2 and γ = 0.8 and start with ’tree lover’ initial policy:
1 π0 = π(ak = w|sk) ∀sk ∈ S.
2 Policy evaluation: vπ0

S =
[
1.14 1.78 2.78 0

]T
3 Greedy policy improvement:

π1(sk) = argmax
ak∈A

E [Rk+1 + γvπ0(Sk+1)|Sk = sk, Ak = ak] ,

= {π(ak = w|sk = 1), π(ak = c|sk = 2), π(ak = c|sk = 3)}

4 Policy evaluation: vπ1
S =

[
1.28 2 3 0

]T
5 Greedy policy improvement:

π2(sk) = argmax
ak∈A

E [Rk+1 + γvπ1(Sk+1)|Sk = sk, Ak = ak] ,

= {π(ak = w|sk = 1), π(ak = c|sk = 2), π(ak = c|sk = 3)} ,
= π1(sk)

= π∗

Paul Swoboda RL Lecture 03 26



Policy Iteration Example: Jack’s Car Rental (1)

▶ States: Two rental locations, maximum of 20 cars each
▶ Actions: Move up to 5 cars between locations overnight
▶ Reward:

▶ +10 $ for each car rented (if available at location)
▶ -2 $ for each overnight car transfer
▶ Discount: γ = 0.9

▶ Dynamics: Cars returned and requested randomly following Poisson
distribution
▶ Pλ(n) =

λn

n! e
−λ

▶ Pλ(n) = probability of observing n events with mean event rate λ
▶ 1st location: λreq. = 3, λret. = 3
▶ 2nd location: λreq. = 4, λret. = 2

Paul Swoboda RL Lecture 03 27



Policy Iteration Example: Jack’s Car Rental (2)

4.3. Policy Iteration 81

Example 4.2: Jack’s Car Rental Jack manages two locations for a nationwide car
rental company. Each day, some number of customers arrive at each location to rent cars.
If Jack has a car available, he rents it out and is credited $10 by the national company.
If he is out of cars at that location, then the business is lost. Cars become available for
renting the day after they are returned. To help ensure that cars are available where
they are needed, Jack can move them between the two locations overnight, at a cost of
$2 per car moved. We assume that the number of cars requested and returned at each
location are Poisson random variables, meaning that the probability that the number is
n is �n

n! e
��, where � is the expected number. Suppose � is 3 and 4 for rental requests at

the first and second locations and 3 and 2 for returns. To simplify the problem slightly,
we assume that there can be no more than 20 cars at each location (any additional cars
are returned to the nationwide company, and thus disappear from the problem) and a
maximum of five cars can be moved from one location to the other in one night. We take
the discount rate to be � = 0.9 and formulate this as a continuing finite MDP, where
the time steps are days, the state is the number of cars at each location at the end of
the day, and the actions are the net numbers of cars moved between the two locations
overnight. Figure 4.2 shows the sequence of policies found by policy iteration starting
from the policy that never moves any cars.

4
V

612

#Cars at second location

0
420

20 0

2
0

#
C
a
rs

 a
t 
fi
rs

t 
lo

ca
ti
o
n

1

1

5

!1
!2

-4

4
3
2

4
3
2

!3

0

0

5

!1
!2
!3 !4

1
2

3
4

0

"1"0 "2

!3 !4

!2

0

1
2
3

4

!1

"3

2

!4!3
!2

0

1

3
4

5

!1

"4

#Cars at second location

#
C

a
rs

 a
t 

fi
rs

t 
lo

c
a

ti
o

n

5

200

0
2
0 v⇡4

⇡0 ⇡1 ⇡2

⇡3 ⇡4

Figure 4.2: The sequence of policies found by policy iteration on Jack’s car rental problem,
and the final state-value function. The first five diagrams show, for each number of cars at
each location at the end of the day, the number of cars to be moved from the first location to
the second (negative numbers indicate transfers from the second location to the first). Each
successive policy is a strict improvement over the previous policy, and the last policy is optimal.

Fig. 1.4: Sequence of policies found by policy iteration including optimal state
value after termination (source: R. Sutton and G. Barto, Reinforcement learning:

an introduction, 2018, CC BY-NC-ND 2.0)

Paul Swoboda RL Lecture 03 28

https://creativecommons.org/licenses/by-nc-nd/2.0/


Value Iteration (1)

▶ Policy iteration involves full policy evaluation steps between policy
improvements.

▶ In large state-space MDPs the full policy evaluation may be
numerically very costly.

▶ Using a limited number of iterative policy evaluations steps and then
apply policy improvement may speed up the entire DP process.

▶ Value iteration: One step iterative policy evaluation followed by policy
improvement.

▶ Allows simple update rule which combines policy improvement with
truncated policy evaluation:

vi+1(sk) = max
ak∈A

E [Rk+1 + γvi(Sk+1)|Sk = sk, Ak = ak] ,

= max
ak∈A

Ra
x + γ

∑
sk+1∈S

puss′vi(sk+1) .
(1.19)

Paul Swoboda RL Lecture 03 29



Value Iteration (2)

input: full model of the MDP, i.e., ⟨S,A,P ,R, γ⟩
parameter: δ > 0 as accuracy termination threshold
init: v0(x) ∀x ∈ S arbitrary except v0(x) = 0 if x is terminal
repeat

∆← 0;
for ∀ sk ∈ S do

ṽ ← v̂(sk);

v̂(sk)← maxak∈A

(
Ra

x + γ
∑

sk+1∈S puss′ v̂(sk+1)
)
;

∆← max (∆, |ṽ − v̂(sk)|);
until ∆ < δ;
output: Deterministic policy π ≈ π∗, such that

π(sk)← argmaxak∈A

(
Ra

x + γ
∑

sk+1∈S puss′ v̂(sk+1)
)
;

Algo. 1.2: Value iteration (note: compared to policy iteration, value
iteration doesn’t require an initial policy but only a state-value guess)

Paul Swoboda RL Lecture 03 30



Value Iteration for Forest Tree MDP

Small Medium Large

Gone

▶ Assume again α = 0.2 and γ = 0.8.
▶ Similar to in-place update policy evaluation, reverse order and start

value iteration with x = 4.
▶ As shown in Tab. 1.3 value iteration converges in one step (for the

given problem) to the optimal state-value.

i vi(x = 1) vi(x = 2) vi(x = 3) vi(x = 4)

0 0 0 0 0
1 1.28 2 3 0
* 1.28 2 3 0

Tab. 1.3: Value iteration for forest tree MDP

Paul Swoboda RL Lecture 03 31



Table of Contents

1 Introduction

2 Policy Evaluation

3 Policy Improvement

4 Policy and Value Iteration

5 Further Aspects

Paul Swoboda RL Lecture 03 32



Summarizing DP Algorithms

▶ All DP algorithms are based on the state-value v(x).
▶ Complexity is O(m · n2) for m actions and n states.
▶ Evaluate all n2 state transitions while considering up to m actions per

state.

▶ Could be also applied to action-values q(x, u).
▶ Complexity is inferior with O(m2 · n2).
▶ There are up to m2 action-values which require n2 state transition

evaluations each.

Problem Relevant Equations Algorithm

prediction Bellman expectation eq. policy evaluation

control
Bellman expectation eq. &
greedy policy improvement

policy iteration

control Bellman optimality eq. value iteration

Tab. 1.4: Short overview addressing the treated DP algorithms

Paul Swoboda RL Lecture 03 33



Asynchronous DP

▶ DP algorithms considered so far used synchronous backups:
▶ In one iteration the entire state space is updated.
▶ May be computational expensive for large MDPs.
▶ Some state-values or policy parts may converge faster than other but

are updated as often as slowly converging states.

▶ In contrast, asynchronous backups update states individually in an
(arbitrary) order:
▶ Choose smart order to achieve faster overall convergence rate.
▶ Some states may be updated more frequently than others.
▶ Overall algorithms converges if all states are still visited to some extent

(important requirement to ensure convergence).
▶ Simple example: in-place policy evaluation where only a subset of all

states are updated each iterations (cf. Algo. 1.1).

Paul Swoboda RL Lecture 03 34



Asynchronous DP: Prioritized Sweeping

▶ Use magnitude of Bellman error as an indicator which state should be
updated next:

argmax
sk∈S

∣∣∣∣∣∣max
ak∈A

Ra
x + γ

∑
sk+1∈S

puss′vi(sk+1)

− vi(sk)

∣∣∣∣∣∣ . (1.20)

▶ Update the state with the largest Bellman error first.

▶ Build up a priority queue of most relevant states by refreshing the
Bellman error after each state update.

Paul Swoboda RL Lecture 03 35



Asynchronous DP: Real-Time Updates

▶ Update those states which are frequently visited by the agent.
▶ Utilizes agent’s experience to guide the asynchronous DP updates.
▶ After each time step ⟨sk, ak, rk+1⟩ update sk:

vi(sk)← max
ak∈A

Ra
x + γ

∑
sk+1∈S

puss′vi(sk+1)

 . (1.21)

8.7. Real-time Dynamic Programming 177

the start state. If there are many states and a small branching factor, this e↵ect will be
large and long-lasting. In the long run, focusing on the on-policy distribution may hurt
because the commonly occurring states all already have their correct values. Sampling
them is useless, whereas sampling other states may actually perform some useful work.
This presumably is why the exhaustive, unfocused approach does better in the long run,
at least for small problems. These results are not conclusive because they are only for
problems generated in a particular, random way, but they do suggest that sampling
according to the on-policy distribution can be a great advantage for large problems, in
particular for problems in which a small subset of the state–action space is visited under
the on-policy distribution.

Exercise 8.7 Some of the graphs in Figure 8.8 seem to be scalloped in their early portions,
particularly the upper graph for b = 1 and the uniform distribution. Why do you think
this is? What aspects of the data shown support your hypothesis? ⇤
Exercise 8.8 (programming) Replicate the experiment whose results are shown in the
lower part of Figure 8.8, then try the same experiment but with b = 3. Discuss the
meaning of your results. ⇤

8.7 Real-time Dynamic Programming

Real-time dynamic programming, or RTDP, is an on-policy trajectory-sampling version of
the value-iteration algorithm of dynamic programming (DP). Because it is closely related
to conventional sweep-based policy iteration, RTDP illustrates in a particularly clear way
some of the advantages that on-policy trajectory sampling can provide. RTDP updates
the values of states visited in actual or simulated trajectories by means of expected
tabular value-iteration updates as defined by (4.10). It is basically the algorithm that
produced the on-policy results shown in Figure 8.8.

The close connection between RTDP and conventional DP makes it possible to derive
some theoretical results by adapting existing theory. RTDP is an example of an asyn-
chronous DP algorithm as described in Section 4.5. Asynchronous DP algorithms are
not organized in terms of systematic sweeps of the state set; they update state values in
any order whatsoever, using whatever values of other states happen to be available. In
RTDP, the update order is dictated by the order states are visited in real or simulated
trajectories.

Start States

Irrelevant States: 
unreachable  from any start state

under any optimal policy

Relevant States
reachable from some start state 

under some optimal policy

If trajectories can start only from a designated
set of start states, and if you are interested in
the prediction problem for a given policy, then on-
policy trajectory sampling allows the algorithm to
completely skip states that cannot be reached by
the given policy from any of the start states: such
states are irrelevant to the prediction problem.
For a control problem, where the goal is to find
an optimal policy instead of evaluating a given
policy, there might well be states that cannot be

Fig. 1.5: Real-time DP updates focus on reachable states (source: R. Sutton and
G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

Paul Swoboda RL Lecture 03 36

https://creativecommons.org/licenses/by-nc-nd/2.0/


Generalized Policy Iteration (GPI)

▶ Almost all RL methods are well-described as GPI.
▶ Push-pull: Improving the policy will deteriorate value estimation.
▶ Well balanced trade-off between evaluating and improving is required.

86 Chapter 4: Dynamic Programming

to determine the states to which the DP algorithm applies its updates. At the same time,
the latest value and policy information from the DP algorithm can guide the agent’s
decision making. For example, we can apply updates to states as the agent visits them.
This makes it possible to focus the DP algorithm’s updates onto parts of the state set that
are most relevant to the agent. This kind of focusing is a repeated theme in reinforcement
learning.

4.6 Generalized Policy Iteration

Policy iteration consists of two simultaneous, interacting processes, one making the value
function consistent with the current policy (policy evaluation), and the other making
the policy greedy with respect to the current value function (policy improvement). In
policy iteration, these two processes alternate, each completing before the other begins,
but this is not really necessary. In value iteration, for example, only a single iteration of
policy evaluation is performed in between each policy improvement. In asynchronous DP
methods, the evaluation and improvement processes are interleaved at an even finer grain.
In some cases a single state is updated in one process before returning to the other. As
long as both processes continue to update all states, the ultimate result is typically the
same—convergence to the optimal value function and an optimal policy.

evaluation

improvement

⇡ � greedy(V )

V⇡

V � v⇡

v⇤⇡⇤

We use the term generalized policy iteration (GPI) to re-
fer to the general idea of letting policy-evaluation and policy-
improvement processes interact, independent of the granularity
and other details of the two processes. Almost all reinforcement
learning methods are well described as GPI. That is, all have
identifiable policies and value functions, with the policy always
being improved with respect to the value function and the value
function always being driven toward the value function for the
policy, as suggested by the diagram to the right. If both the
evaluation process and the improvement process stabilize, that
is, no longer produce changes, then the value function and policy
must be optimal. The value function stabilizes only when it
is consistent with the current policy, and the policy stabilizes
only when it is greedy with respect to the current value function.
Thus, both processes stabilize only when a policy has been found that is greedy with
respect to its own evaluation function. This implies that the Bellman optimality equation
(4.1) holds, and thus that the policy and the value function are optimal.

The evaluation and improvement processes in GPI can be viewed as both competing
and cooperating. They compete in the sense that they pull in opposing directions. Making
the policy greedy with respect to the value function typically makes the value function
incorrect for the changed policy, and making the value function consistent with the policy
typically causes that policy no longer to be greedy. In the long run, however, these
two processes interact to find a single joint solution: the optimal value function and an
optimal policy.

4.7. E�ciency of Dynamic Programming 87

v⇤, ⇡⇤

⇡ = greed
y(v)

v, ⇡

v = v⇡

One might also think of the interaction between
the evaluation and improvement processes in GPI
in terms of two constraints or goals—for example,
as two lines in two-dimensional space as suggested
by the diagram to the right. Although the real
geometry is much more complicated than this, the
diagram suggests what happens in the real case.
Each process drives the value function or policy
toward one of the lines representing a solution to
one of the two goals. The goals interact because the two lines are not orthogonal. Driving
directly toward one goal causes some movement away from the other goal. Inevitably,
however, the joint process is brought closer to the overall goal of optimality. The arrows
in this diagram correspond to the behavior of policy iteration in that each takes the
system all the way to achieving one of the two goals completely. In GPI one could also
take smaller, incomplete steps toward each goal. In either case, the two processes together
achieve the overall goal of optimality even though neither is attempting to achieve it
directly.

4.7 E�ciency of Dynamic Programming

DP may not be practical for very large problems, but compared with other methods for
solving MDPs, DP methods are actually quite e�cient. If we ignore a few technical details,
then the (worst case) time DP methods take to find an optimal policy is polynomial in
the number of states and actions. If n and k denote the number of states and actions, this
means that a DP method takes a number of computational operations that is less than
some polynomial function of n and k. A DP method is guaranteed to find an optimal
policy in polynomial time even though the total number of (deterministic) policies is kn.
In this sense, DP is exponentially faster than any direct search in policy space could
be, because direct search would have to exhaustively examine each policy to provide the
same guarantee. Linear programming methods can also be used to solve MDPs, and in
some cases their worst-case convergence guarantees are better than those of DP methods.
But linear programming methods become impractical at a much smaller number of states
than do DP methods (by a factor of about 100). For the largest problems, only DP
methods are feasible.

DP is sometimes thought to be of limited applicability because of the curse of dimen-
sionality, the fact that the number of states often grows exponentially with the number
of state variables. Large state sets do create di�culties, but these are inherent di�culties
of the problem, not of DP as a solution method. In fact, DP is comparatively better
suited to handling large state spaces than competing methods such as direct search and
linear programming.

In practice, DP methods can be used with today’s computers to solve MDPs with
millions of states. Both policy iteration and value iteration are widely used, and it is not
clear which, if either, is better in general. In practice, these methods usually converge
much faster than their theoretical worst-case run times, particularly if they are started

Fig. 1.6: Interpreting generalized policy iteration to switch back and forth
between (arbitrary) evaluations and improvement steps (source: R. Sutton and G.

Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

Paul Swoboda RL Lecture 03 37

https://creativecommons.org/licenses/by-nc-nd/2.0/


Curse of Dimensionality

▶ DP is much more efficient than an exhaustive search over all n states
and m actions in finite MDPs in order to find an optimal policy.
▶ Exhaustive search for deterministic policies: mn evaluations.
▶ DP results in polynomial complexity regarding m and n.

▶ Nevertheless, DP uses full-width backups:
▶ For each state update, every successor state and action is considered.
▶ While utilizing full knowledge of the MDP structure.

▶ Hence, DP can be effective up to medium-sized MDPs (i.e., million
states)

▶ For large problems DP suffers from the curse of dimensionality:
▶ Number of finite states n grows exponentially with the number of state

variables.
▶ Also: if continuous variables need quantization typically a large number

of states results.
▶ Single state update may become computational infeasible.

Paul Swoboda RL Lecture 03 38



Summary: What You’ve Learned Today

▶ DP is applicable for prediction and control problems in MDPs.

▶ But requires always full knowledge about the environment (i.e., it is a
model-based solution also called planning).

▶ DP is more efficient than exhaustive search.

▶ But suffers from the curse of dimensionality for large MDPs.

▶ (Iterative) policy evaluations and (greedy) improvements solve MDPs.

▶ Both steps can be combined via value iteration.

▶ This idea of (generalized) policy iteration is a basic scheme of RL.

▶ Implementing DP algorithms comes with many degrees of freedom.

▶ For example how to order the state updates (asyn. vs. sync.).

Paul Swoboda RL Lecture 03 39


	Lecture 03: Dynamic Programming
	Introduction
	Policy Evaluation
	Policy Improvement
	Policy and Value Iteration
	Further Aspects


	1.Plus: 
	1.Reset: 
	1.Minus: 
	1.EndRight: 
	1.StepRight: 
	1.PlayPauseRight: 
	1.PlayRight: 
	1.PauseRight: 
	1.PlayPauseLeft: 
	1.PlayLeft: 
	1.PauseLeft: 
	1.StepLeft: 
	1.EndLeft: 
	anm1: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


