
Lecture 07: On-Policy Prediction
with Function Approximation

Paul Swoboda

Paul Swoboda RL Lecture 07 1

https://ei.uni-paderborn.de/lea/

Table of Contents

1 Gradient-Based Prediction

2 Batch Learning

3 On-Policy Control With (Semi-)Gradients

4 Deep Q-Networks (DQN)

Paul Swoboda RL Lecture 07 2

Prediction Framework with Function Approximation (1)

▶ Estimate true value function vπ(x) using a parametrizable
approximate value function

v̂(x̃,w) ≈ vπ(x). (1.1)

▶ The state x might be enhanced by feature engineering (i.e., additional
signal inputs are derived in the feature vector x̃ = f(x) ∈ Rκ).

▶ Above, w ∈ Rζ is the parameter vector.

▶ Typically, ζ << |X | applies (otherwise approximation is pointless).

Generalization

Due to the usage of function approximation one incremental learning step
changes at least one element wi ∈ w which

▶ affects the estimated value of many states compared to

▶ the tabular case where one update step affects only one state.

Paul Swoboda RL Lecture 07 3

Types of Action-Value Function Approximation

Fig. 1.1: Possible function approximation settings for discrete actions

▶ Left: one function with both states and actions as input
▶ Middle: one function with i = 1, 2, . . . outputs covering the action

space (e.g., ANN with appropriate output layer)
▶ Right: multiple (sub-)functions one for each possible action ui (e.g.,

multitude of linear approximators in small action spaces)

Paul Swoboda RL Lecture 07 4

Prediction Framework with Function Approximation (2)

▶ In the tabular case a specific prediction objective was not needed:
▶ The learned value function could exactly match the true value.
▶ The value estimate at each state was decoupled from other states.

▶ Due to generalization impact we need to define an accuracy metric on
the entire state space (the RL prediction goal):

Definition 1.1: Mean Squared Value Error

The RL prediction objective is defined as the mean squared value error

VE(w) =

∫

X
µ(x) [vπ(x)− v̂(x̃,w)]2 (1.2)

with µ(x) ∈ {R|µ(x) ≥ 0} being a state distribution weight with
∫
X µ = 1.

▶ Practical note: As the true value vπ(x) is most likely unknown in
most tasks, (1.2) cannot be computed exactly but only estimated.

Paul Swoboda RL Lecture 07 5

Simplification for On-Policy Prediction

▶ For prediction we focus entirely on the on-policy case.
▶ Hence, µ(x) is the on-policy distribution under π.
▶ For practical usage we can therefore approximate the weighted

integration over the entire state space X in (1.2) by the sampled
MSE of the visited state trajectory:

VE(w) ≈ J(w) =
∑

k

[vπ(xk)− v̂(x̃k,w)]2 (1.3)

▶ If we would perform off-policy prediction we have to transform the
sampled value (estimates) from the behavior to the target policy.

▶ Likewise when doing this for tabular methods, this increases the
prediction variance.

▶ In combination with generalization errors due to function
approximation, the overall risk of diverging is significantly higher
compared to the on-policy case.

Paul Swoboda RL Lecture 07 6

Prediction Challenges with Function Approximation

Summarizing the two previous slides:

▶ The goal is to find
w∗ = argmin

w
J(w). (1.4)

First challenge:

▶ Function approximator v̂(x̃,w) requires certain form to fit vπ(x).

Second challenge:
▶ If v̂(x̃,w) is linear: convex optimization problem.

▶ The nice case: the local optimum equals the global optimum and is
uniquely discoverable. But requires linear feature dependence.

▶ If v̂(x̃,w) is non-linear: non-linear optimization problem.
▶ The ugly case: possible multitude of local optima with no guarantee to

locate the global one.
▶ Depending on optimization strategy the RL algorithm may diverge.

Paul Swoboda RL Lecture 07 7

Updating the Parameter Vector to Find (Local) Optimum

Transferring the idea of incremental learning steps from the tabular case

v̂(s)← v̂(s) + α [vπ(s)− v̂(s)] (1.5)

to function approximation using a gradient descent update:

w ← w − α∇wJ(w). (1.6)

▶ The search direction is the prediction objective gradient ∇wJ(w).

▶ The learning rate α determines the step size of one update.

Paul Swoboda RL Lecture 07 8

How to Retrieve the Gradient?

*

*

SGD

GD

Fig. 1.2: Exemplary optimization paths
for (stochastic) gradient descent

(derivative work of www.wikipedia.org,
CC0 1.0)

▶ Full calculus of ∇wJ(w):
▶ Batch evaluation on sampled

sequence s0, s1, s2, . . . might be
computationally costly.

▶ In RL control: since π changes
over time, past data in batch is
not fully representative.

▶ SGD: sample gradient at a given
state sk and parameter vector wk:

∇wJ(w) ≈− [vπ(sk)− v̂(s̃k,wk)]

∇wv̂(s̃k,wk).

▶ Regular gradient descent leads to
same result as SGD in expectation
(averaging of samples).

Paul Swoboda RL Lecture 07 9

https://commons.wikimedia.org/wiki/File:Gradient_descent.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Asking an Expert on Convergence Properties

The optimization task could be
▶ non-linear,
▶ multidimensional and
▶ non-stationary.

Applying gradient descent to such a problem requires:
▶ Enormous luck to initialize w0 close to the global optimum.
▶ Cautious tuning of α to prevent diverging or chattering of wk.

Paul Swoboda RL Lecture 07 10

SGD-Based Learning Step

Despite the possible problems we apply SGD-based learning due to its
striking simplicity (and wide distribution in the literature):

Gradient-based parameter update

To optimize J(w) by an appropriate function approximator v̂(s̃,w) the
incremental learning update per step is

wk+1 = wk + α [vπ(sk)− v̂(s̃k,wk)]∇wv̂(s̃k,wk). (1.7)

Nevertheless, the true update target vπ(sk) is often unknown due to

▶ noise or

▶ the learning process itself (e.g. bootstrapping estimates).

Paul Swoboda RL Lecture 07 11

Generalization Example for Parameter Update

▶ Function approximation v̂(s̃,w) =
[
w1 w2 w3

] [
s1 s2 1

]T

▶ Initial parameter: wT
0 =

[
1 1 1

]
, vπ(s0 =

[
1 1

]T
) = 1, α = 0.1

▶ New parameter set:

wT
1 = wT

0 + α [vπ(s0)− v̂(s̃0,w0)] (∇wv̂(s̃0,w0))
T

=
[
1 1 1

]
+ 0.1 (1− 3)

[
1 1 1

]
=

[
0.8 0.8 0.8

]

5
0-10

-5

0

5

10

15

-5 -50 5

5
0-10

-5

0

5

10

15

-5 -50 5

Fig. 1.3: Exemplary state-value estimation update with linear regression model
Paul Swoboda RL Lecture 07 12

Algorithmic Implementation: Gradient Monte Carlo
Prediction

▶ Direct transfer from tabular case to function approximation

▶ Update target becomes the sampled return vπ(sk) ≈ gk

input: a policy π to be evaluated, a feature representation s̃ = f(s)
input: a differentiable function v̂ : Rκ × Rζ → R
parameter: step size α ∈ {R|0 < α < 1}
init: value-function weights w ∈ Rζ arbitrarily
for j = 1, 2, . . . , episodes do

generate an episode following π: s0, a0, r1, . . . , sT ;
calculate every-visit return gk;
for k = 0, 1, . . . , T − 1 time steps do

w ← w + α [gk − v̂(s̃k,w)]∇wv̂(s̃k,w);

Algo. 1.1: Every-visit gradient MC prediction(output: parameter vector
w for v̂π)

Paul Swoboda RL Lecture 07 13

Semi-Gradient Methods

▶ If bootstrapping is applied, the true target vπ(sk) is approximated by
a target depending on the estimate v̂(s̃k,w).

▶ If v̂(s̃k,w) does not perfectly fit vπ(sk), the update target becomes a
biased estimate of vπ(sk).
▶ For example, in the TD(0) case applying SGD we receive:

vπ(s) ≈ r + γv̂(s̃′,w),

J(w) ≈
∑

k

[rk+1 + γv̂(s̃k+1,wk)− v̂(s̃k,wk)]
2 ,

∇wJ(w) ≈ [rk+1 + γv̂(s̃k+1,wk)− v̂(s̃k,wk)]

∇w [γv̂(s̃k+1,wk)− v̂(s̃k,wk)] .

(1.8)

Semi-gradient methods

When bootstrapping is applied, the gradient does not take into account
any gradient component of the bootstrapped target estimate.

▶ Motivation: speed up gradient calculation while assuming that the
simplification error is small (e.g. due to discounting).

Paul Swoboda RL Lecture 07 14

Algorithmic Implementation: Semi-Gradient TD(0)

The semi-gradient of J(w) for TD(0) from prev. slide is then

∇wJ(w) ≈ − [rk+1 + γv̂(s̃k+1,wk)− v̂(s̃k,wk)]∇wv̂(s̃k,wk). (1.9)

input: a policy π to be evaluated, a feature representation s̃ = f(s)
input: a differentiable function v̂ : Rκ × Rζ → R with v̂(s̃T , ·) = 0
parameter: step size α ∈ {R|0 < α < 1}
init: value-function weights w ∈ Rζ arbitrarily
for j = 1, 2, . . . episodes do

initialize s0;
for k = 0, 1, 2 . . . time steps do

ak ← apply action from π(sk);
observe sk+1 and rk+1;
w ← w + α [rk+1 + γv̂(s̃k+1,w)− v̂(s̃k,w)]∇wv̂(s̃k,w);
exit loop if sk+1 is terminal;

Algo. 1.2: Semi-gradient TD(0) (output: parameter vector w for v̂π)

Paul Swoboda RL Lecture 07 15

Table of Contents

1 Gradient-Based Prediction

2 Batch Learning

3 On-Policy Control With (Semi-)Gradients

4 Deep Q-Networks (DQN)

Paul Swoboda RL Lecture 07 16

Background and Motivation

▶ As already discussed in the tabular case: incremental learning is not
data efficient (cf. example Fig. ??).
▶ During one incremental learning step we are not utilizing the given

information to the maximum possible extent.
▶ Also applies to SGD-based updates with function approximation.

▶ Alternative: batch learning methods
▶ Find w∗ given a fixed, consistent data set D
▶ D = {⟨x0, vπ(x0)⟩ , ⟨x1, vπ(x1)⟩ , . . .}

▶ What batch learning options do we have?
▶ Experience replay (cf. planning and learning lecture e.g. Fig. ??)
▶ If v̂(x̃,w) is linear: closed-form least-squares solution

Paul Swoboda RL Lecture 07 17

SGD with Experience Replay

Based on the data set

D = {⟨x0, vπ(x0)⟩ , ⟨x1, vπ(x1)⟩ , . . .}
repeat:

1 Sample uniformly i = 1, . . . , b state-value pairs from experience
(so-called mini batch)

⟨xi, vπ(xi)⟩ ∼ D.

2 Apply (semi) SGD update step:

wk+1 = wk +
α

b

b∑

i=1

[vπ(xi)− v̂(x̃i,wi)]∇wv̂(x̃i,wi).

▶ Universally applicable: v̂(x̃,w) can be any differentiable function.
▶ The usual technical tuning requirements regarding α apply.
▶ True target vπ(x) is usually approximated by MC or TD targets.

Paul Swoboda RL Lecture 07 18

(Ordinary) Least Squares

Assuming the following applies:

▶ v̂(x̃,w) is a linear estimator and

▶ D a fixed, representative data set following the on-policy distribution.

Then, minimizing the quadratic cost function (1.3) becomes

▶ an ordinary least squares (OLS) / linear regression problem.

We focus on the combination of OLS and TD(0) (so-called LSTD), but
the following can be equally extended to n-step learning or MC.

▶ Rewriting J(w) from (1.3) using linear approximation TD(0) target:

vπ(xk) ≈ rk+1 + γv̂(xk+1) = rk+1 + γx̃T
k+1w (1.10)

J(w) =
∑

k

[vπ(xk)− v̂(x̃k,w)]2 =
∑

k

[
rk+1 −

(
x̃T
k − γx̃T

k+1

)
w
]2

.

Paul Swoboda RL Lecture 07 19

Table of Contents

1 Gradient-Based Prediction

2 Batch Learning

3 On-Policy Control With (Semi-)Gradients

4 Deep Q-Networks (DQN)

Paul Swoboda RL Lecture 07 20

Gradient-Based Action-Value Learning

▶ Transferring the objective J(w) from on-policy prediction to control
yields:

J(w) =
∑

k

[qπ(sk, ak)− q̂(sk, ak,w)]2 . (1.11)

▶ Analogous, the (semi-)gradient-based parameter update from (1.7) is
also applied to action values:

wk+1 = wk +α [qπ(sk, ak)− q̂(sk, ak,wk)]∇wq̂(sk, ak,wk). (1.12)

▶ Depending on the control approach, the true target qπ(sk, ak) is
approximated by:
▶ Monte Carlo: full episodic return qπ(sk, ak) ≈ g,
▶ Sarsa: one-step bootstrapped estimate

qπ(sk, ak) ≈ rk+1 + γq̂(sk+1, ak+1,wk),
▶ n-step Sarsa:

qπ(sk, ak) ≈ rk+1+γrk+2+· · ·+γn−1rk+n+γnq̂(sk+n, ak+n,wk+n−1).

Paul Swoboda RL Lecture 07 21

Houston: We have a Problem (1)

▶ Recall tabular policy improvement theorem guarantees to find a
globally better or equally good policy in each update step.

▶ With parameter updates (1.12) generalization applies.

▶ Hence, when reacting to one specific state-action transition other
parts of the state-action space within q̂ are affected too.4.7. E�ciency of Dynamic Programming 87

v⇤, ⇡⇤

⇡ = greed
y(v)

v, ⇡

v = v⇡

One might also think of the interaction between
the evaluation and improvement processes in GPI
in terms of two constraints or goals—for example,
as two lines in two-dimensional space as suggested
by the diagram to the right. Although the real
geometry is much more complicated than this, the
diagram suggests what happens in the real case.
Each process drives the value function or policy
toward one of the lines representing a solution to
one of the two goals. The goals interact because the two lines are not orthogonal. Driving
directly toward one goal causes some movement away from the other goal. Inevitably,
however, the joint process is brought closer to the overall goal of optimality. The arrows
in this diagram correspond to the behavior of policy iteration in that each takes the
system all the way to achieving one of the two goals completely. In GPI one could also
take smaller, incomplete steps toward each goal. In either case, the two processes together
achieve the overall goal of optimality even though neither is attempting to achieve it
directly.

4.7 E�ciency of Dynamic Programming

DP may not be practical for very large problems, but compared with other methods for
solving MDPs, DP methods are actually quite e�cient. If we ignore a few technical details,
then the (worst case) time DP methods take to find an optimal policy is polynomial in
the number of states and actions. If n and k denote the number of states and actions, this
means that a DP method takes a number of computational operations that is less than
some polynomial function of n and k. A DP method is guaranteed to find an optimal
policy in polynomial time even though the total number of (deterministic) policies is kn.
In this sense, DP is exponentially faster than any direct search in policy space could
be, because direct search would have to exhaustively examine each policy to provide the
same guarantee. Linear programming methods can also be used to solve MDPs, and in
some cases their worst-case convergence guarantees are better than those of DP methods.
But linear programming methods become impractical at a much smaller number of states
than do DP methods (by a factor of about 100). For the largest problems, only DP
methods are feasible.

DP is sometimes thought to be of limited applicability because of the curse of dimen-
sionality, the fact that the number of states often grows exponentially with the number
of state variables. Large state sets do create di�culties, but these are inherent di�culties
of the problem, not of DP as a solution method. In fact, DP is comparatively better
suited to handling large state spaces than competing methods such as direct search and
linear programming.

In practice, DP methods can be used with today’s computers to solve MDPs with
millions of states. Both policy iteration and value iteration are widely used, and it is not
clear which, if either, is better in general. In practice, these methods usually converge
much faster than their theoretical worst-case run times, particularly if they are started

Fig. 1.4: GPI

Loss of policy improvement theorem

▶ Is not applicable with function
approximation!

▶ We may improve and impair the
policy at the same time!

Paul Swoboda RL Lecture 07 22

Houston: We have a Problem (2)

 Here, when the next state s  is input into CNN, (,)Q s a 

can be obtained. Then we define a label vector related to 1Q

being 2Q which represents the target vector. The two vectors

only have one different component. That is

(,) ()r Q s a Q s,a    . Now the whole scheme of DRL based

on SARSA learning is presented in Algorithm 1. It should be

noted that during training, the next action a for estimating the

current state-action value is never greedy. On the contrary,
there is a tiny probability that a random action is chosen.

Algorithm1 Deep Reinforcement Learning based on SARSA

1: initialize data stack D with size of N

 and parameters of CNN 

2: for episode=1, M do

3: initialize state 1 1{ }s x and preprocess state 1 1()s 

4: select 1a with  -greedy method

5: for 1,t T do

6: take action ta , observe next state 1tx  and tr ,

1 1()t ts  

7: store data 1(, ,)t t t ta ,r   into stack D

8: sample data from stack D

 select a with  -greedy method

9:
1

1

(, ;)

j

j

j j

r if episode teminates at step j
y

r Q a otherwise  


 



10: according to (7), optimize the loss function

()i iL 

ta a

11: end for

12: end for

IV. EXPERIMENTS AND RESULTS

In this section, two simulation experiments will be
presented to verify our algorithm. The two video games are
from Atari 2600, called breakout and seaquest. Fig. 3 shows
the images of the two games. The CNN contains 3 convolution
layers and two full connected layers. All the settings in these
two experiments are the same as DQN [14], except for the RL
method. The discount factor is 0.99. Every 250 thousand steps,
the agent is tested. Every testing episode are 125 thousand
steps.

A. Breakout

In breakout, 5 basic actions including up, down, left, right

and null are given. The operation image is like the left of Fig. 3.

This game expects the agent to obtain as many scores as

possible. The agent controls dam-board which can reflect the

bullet. Once the bullet hits bricks in the top area, the agent gets

1 point. If the bullet falls down, the number of lives is

subtracted 1 until the game is over.

Fig. 3 Two video games: breakout and seaquest.

Fig. 4 and Fig. 5 present the average score with deep
SARSA learning and deep Q learning. We can see that at the
end of the 20th epoch, deep SARSA learning reaches an
average reward of about 100. By contrast, deep Q learning can
reach about 170. We can conclude that in the early stage of
training, deep SARSA learning converges slower than deep Q
learning. However, after 30 epochs, deep SARSA learning
gains higher average scores. In addition, deep SARSA learning
converges more stably than deep Q learning.

Fig. 4 Average score with deep SARSA learning in Breakout

Fig. 5 Average score with deep Q learning in Breakout

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on June 12,2020 at 13:04:09 UTC from IEEE Xplore. Restrictions apply.

The number of games during test with two algorithms is
displayed in Figs. 6 and 7. It reflects the convergent trends of
these algorithms. After training 20 epochs, deep SARSA
learning can also converge to the equilibrium point at about 75.
In deep Q learning, the equilibrium point is about 80.

Fig. 6 Number of games during test with deep SARSA learning in Breakout

Fig. 7 Number of games during test with deep Q learning in Breakout

B. Seaquest

In seaquest, 5 basic actions are given including up, down,
left, right and firing. The operation image is shown in the right
of Fig. 3. This game expects that the agent should obtain as
many scores as possible by saving divers and killing fish. The
agent can control the submarine with five basic actions as
mentioned above. Once the submarine saves the diver or kills
fish, the agent gets 20 and 40 points. If the submarine runs into
fish or the oxygen in the submarine is 0, the number of life
drops 1 until the game is over. So if human play this game, the
quantity of oxygen should also be taken into consideration.

Fig. 8 and Fig. 9 show the average score of deep SARSA
learning and deep Q learning. We can see that the score of deep
SARSA learning increases a little slower before the 10th epoch
than deep Q learning. However, it will converge much faster
after the 30th epoch. At last deep SARSA learning can gain
about 5000 points while deep Q learning only gets 3700 points.

Fig. 8 Average score with deep SARSA learning in Seaquest

Fig. 9 Average score with deep Q learning in Seaquest

The number of games during test with two algorithms is
shown in Fig. 10 and Fig. 11. It can also reflect the trend of
DRL process. Deep SARSA learning even shows a smother
process in this video game than deep Q learning.

Fig. 10 Number of games during test with deep SARSA learning in Seaquest

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on June 12,2020 at 13:04:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 1.5: Learning curves with drastic performance dips when applying Sarsa with
function approximation. Left: Atari Breakout, right: Atari Seaquest (source: D.
Zhao et al., Deep reinforcement learning with experience replay based on SARSA,

IEEE Symposium Series on Computational Intelligence, 2016)

Paul Swoboda RL Lecture 07 23

Algorithmic Implementation: Gradient MC Control

▶ Direct transfer from tabular case to function approximation

▶ Update target becomes the sampled return qπ(sk, ak) ≈ gk
▶ If operating ε-greedy on q̂: baseline policy (given by w0) must

(successfully) terminate the episode!

input: a differentiable function q̂ : Rκ × Rζ → R
input: a policy π (only if estimating qπ)
parameter: step size α ∈ {R|0 < α < 1}, ε ∈ {R|0 < ε << 1}
init: parameter vector w ∈ Rζ arbitrarily
for j = 1, 2, . . . , episodes do

generate episode following π or ε-greedy on q̂: s0, a0, r1, . . . , sT ;
calculate every-visit return gk;
for k = 0, 1, . . . , T − 1 time steps do

w ← w + α [gk − q̂(sk, ak,w)]∇wq̂(sk, ak,w);

Algo. 1.3: Every-visit gradient MC-based action-value estimation (out-
put: parameter vector w for q̂π or q̂∗)

Paul Swoboda RL Lecture 07 24

Algorithmic Implementation: Semi-Gradient Sarsa

input: a differentiable function q̂ : Rκ × Rζ → R
input: a policy π (only if estimating qπ)
parameter: step size α ∈ {R|0 < α < 1}, ε ∈ {R|0 < ε << 1}
init: parameter vector w ∈ Rζ arbitrarily
for j = 1, 2, . . . episodes do

initialize s0;
for k = 0, 1, 2 . . . time steps do

uk ← apply action from π(sk) or ε-greedy on q̂(sk, ·,w);
observe sk+1 and rk+1;
if sk+1 is terminal then

w ← w + α [rk+1 − q̂(sk, ak,w)]∇w q̂(sk, ak,w);
go to next episode;

choose u′ from π(sk+1) or ε-greedy on q̂(sk+1, ·,w);
w ←
w + α [rk+1 + γq̂(sk+1, a

′,w)− q̂(sk, ak,w)]∇w q̂(sk, ak,w);

Algo. 1.4: Semi-gradient Sarsa action-value estimation (output: pa-
rameter vector w for q̂π or q̂∗)

Paul Swoboda RL Lecture 07 25

Sarsa Application Example: Mountain Car (1)

Fig. 1.6: Classic RL control example:
mountain car (derivative work based
on https://github.com/openai/gym,

MIT license)

▶ Two cont. states: position, velocity

▶ One discrete action: acceleration
given by {left, none, right}

▶ rk = −1, i.e., goal is to terminate
episode as quick as possible

▶ Episode terminates when car
reaches the flag (or max steps)

▶ Simplified longitudinal car physics
with state constraints

▶ Position initialized randomly within
valley, zero initial velocity

▶ Car is underpowered and requires
swing-up

Paul Swoboda RL Lecture 07 26

https://github.com/openai/gym

Sarsa Application Example: Mountain Car (2)10.1. Episodic Semi-gradient Control 245

!1.2

Position

0.6

Step 428

Goal

Position

4

0

!
.0

7

.0
7

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

Position

Position

Position

0

2 7

0

120

0

104

0

4 6

Episode 12

Episode 104 Episode 1000 Episode 9000

MOUNTAIN CAR Goal

Figure 10.1: The Mountain Car task (upper left panel) and the cost-to-go function
(�maxa q̂(s, a,w)) learned during one run.

can build up enough inertia to carry it up the steep slope even though it is slowing down
the whole way. This is a simple example of a continuous control task where things have
to get worse in a sense (farther from the goal) before they can get better. Many control
methodologies have great di�culties with tasks of this kind unless explicitly aided by a
human designer.

The reward in this problem is �1 on all time steps until the car moves past its goal
position at the top of the mountain, which ends the episode. There are three possible
actions: full throttle forward (+1), full throttle reverse (�1), and zero throttle (0). The
car moves according to a simplified physics. Its position, xt, and velocity, ẋt, are updated
by

xt+1
.
= bound

⇥
xt + ẋt+1

⇤

ẋt+1
.
= bound

⇥
ẋt + 0.001At � 0.0025 cos(3xt)

⇤
,

where the bound operation enforces �1.2  xt+1  0.5 and �0.07  ẋt+1  0.07. In
addition, when xt+1 reached the left bound, ẋt+1 was reset to zero. When it reached
the right bound, the goal was reached and the episode was terminated. Each episode
started from a random position xt 2 [�0.6,�0.4) and zero velocity. To convert the two
continuous state variables to binary features, we used grid-tilings as in Figure 9.9. We
used 8 tilings, with each tile covering 1/8th of the bounded distance in each dimension,

Fig. 1.7: Cost-to-go function −maxa q̂(s, a,w) for mountain car task using linear
approximation with Sarsa and tile coding (source: R. Sutton and G. Barto,

Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

Paul Swoboda RL Lecture 07 27

https://creativecommons.org/licenses/by-nc-nd/2.0/

Tile Coding

▶ Problem space is grouped into (overlapping) partitions / tiles.

▶ Performs a discretization of the problem space.

▶ Function approximation serves as interpolation between tiles.

▶ Find an example here: https://github.com/MeepMoop/tilecoding .

9.5. Feature Construction for Linear Methods 217

9.5.4 Tile Coding

Tile coding is a form of coarse coding for multi-dimensional continuous spaces that is
flexible and computationally e�cient. It may be the most practical feature representation
for modern sequential digital computers.

In tile coding the receptive fields of the features are grouped into partitions of the state
space. Each such partition is called a tiling, and each element of the partition is called a
tile. For example, the simplest tiling of a two-dimensional state space is a uniform grid
such as that shown on the left side of Figure 9.9. The tiles or receptive field here are
squares rather than the circles in Figure 9.6. If just this single tiling were used, then the
state indicated by the white spot would be represented by the single feature whose tile
it falls within; generalization would be complete to all states within the same tile and
nonexistent to states outside it. With just one tiling, we would not have coarse coding
but just a case of state aggregation.

Point in
state space

to be
represented

Tiling 1
Tiling 2

Tiling 3
Tiling 4Continuous

2D state
space

Four active
tiles/features

overlap the point
and are used to

represent it

Figure 9.9: Multiple, overlapping grid-tilings on a limited two-dimensional space. These tilings
are o↵set from one another by a uniform amount in each dimension.

To get the strengths of coarse coding requires overlapping receptive fields, and by
definition the tiles of a partition do not overlap. To get true coarse coding with tile coding,
multiple tilings are used, each o↵set by a fraction of a tile width. A simple case with
four tilings is shown on the right side of Figure 9.9. Every state, such as that indicated
by the white spot, falls in exactly one tile in each of the four tilings. These four tiles
correspond to four features that become active when the state occurs. Specifically, the
feature vector x(s) has one component for each tile in each tiling. In this example there
are 4⇥ 4⇥ 4 = 64 components, all of which will be 0 except for the four corresponding to
the tiles that s falls within. Figure 9.10 shows the advantage of multiple o↵set tilings
(coarse coding) over a single tiling on the 1000-state random walk example.

An immediate practical advantage of tile coding is that, because it works with partitions,
the overall number of features that are active at one time is the same for any state.
Exactly one feature is present in each tiling, so the total number of features present is
always the same as the number of tilings. This allows the step-size parameter, ↵, to
be set in an easy, intuitive way. For example, choosing ↵ = 1

n , where n is the number

Fig. 1.8: Tile coding example in 2D (source: R. Sutton and G. Barto,
Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

Paul Swoboda RL Lecture 07 28

https://github.com/MeepMoop/tilecoding
https://creativecommons.org/licenses/by-nc-nd/2.0/

Sarsa Application Example: Mountain Car (3)

246 Chapter 10: On-policy Control with Approximation

and asymmetrical o↵sets as described in Section 9.5.4.1 The feature vectors x(s, a) created
by tile coding were then combined linearly with the parameter vector to approximate the
action-value function:

q̂(s, a,w)
.
= w>x(s, a) =

dX

i=1

wi · xi(s, a), (10.3)

for each pair of state, s, and action, a.

Figure 10.1 shows what typically happens while learning to solve this task with this
form of function approximation.2 Shown is the negative of the value function (the cost-
to-go function) learned on a single run. The initial action values were all zero, which was
optimistic (all true values are negative in this task), causing extensive exploration to occur
even though the exploration parameter, ", was 0. This can be seen in the middle-top panel
of the figure, labeled “Step 428”. At this time not even one episode had been completed,
but the car has oscillated back and forth in the valley, following circular trajectories in
state space. All the states visited frequently are valued worse than unexplored states,
because the actual rewards have been worse than what was (unrealistically) expected.
This continually drives the agent away from wherever it has been, to explore new states,
until a solution is found.

Figure 10.2 shows several learning curves for semi-gradient Sarsa on this problem, with
various step sizes.

100

200

400

1000

0

Mountain Car
Steps per episode

log scale
averaged over 100 runs

Episode
500

↵=0.5/8

↵=0.1/8
↵=0.2/8

Figure 10.2: Mountain Car learning curves for the semi-gradient Sarsa method with tile-coding
function approximation and "-greedy action selection.

1In particular, we used the tile-coding software, available at http://incompleteideas.net/tiles/

tiles3.html, with iht=IHT(4096) and tiles(iht,8,[8*x/(0.5+1.2),8*xdot/(0.07+0.07)],A) to get
the indices of the ones in the feature vector for state (x, xdot) and action A.

2This data is actually from the “semi-gradient Sarsa(�)” algorithm that we will not meet until
Chapter 12, but semi-gradient Sarsa would behave similarly.

Fig. 1.9: Mountain car learning curves with semi-gradient Sarsa for different
learning rates α (source: R. Sutton and G. Barto, Reinforcement learning: an

introduction, 2018, CC BY-NC-ND 2.0)

Paul Swoboda RL Lecture 07 29

https://creativecommons.org/licenses/by-nc-nd/2.0/

Table of Contents

1 Gradient-Based Prediction

2 Batch Learning

3 On-Policy Control With (Semi-)Gradients

4 Deep Q-Networks (DQN)

Paul Swoboda RL Lecture 07 30

General Background on DQN

▶ Recall incremental learning step from tabular Q-learning:

q̂(s, a)← q̂(s, a) + α
[
r + γmax

a
q̂(s′, a)− q̂(s, a)

]
.

▶ Deep Q-networks (DQN) transfer this to an approximate solution:

w = w + α
[
r + γmax

a
q̂(s′, a,w)− q̂(s, a,w)

]
∇wq̂(s, a,w). (1.13)

However, instead of using above semi-gradient step-by-step updates, DQN
is characterized by

▶ an experience replay buffer for batch learning (cf. prev. lectures),

▶ a separate set of weights w− for the bootstrapped Q-target.

Motivation behind:

▶ Efficiently use available data (experience replay).

▶ Stabilize learning by trying to make targets and feature inputs more
like i.i.d. data from a stationary process (prevent windup of values).

Paul Swoboda RL Lecture 07 31

Summary of DQN Working Principle (1)

▶ Take actions a based on q̂(s, a,w) (e.g., ε-greedy).

▶ Store observed tuples ⟨s, a, r, s′⟩ in memory buffer D.

▶ Sample mini-batches Db from D.

▶ Calculate bootstrapped Q-target with a delayed parameter vector w−

(so-called target network):

qπ(s, a) ≈ r + γmax
a

q̂(s′, a,w−).

▶ Optimize MSE loss between above targets and the regular
approximation q̂(s, a,w) using Db

L(w) =
[(

r + γmax
a

q̂(s′, a,w−)
)
− q̂(s, a,w)

]2
Db

. (1.14)

▶ Update w− based on w from time to time.

Paul Swoboda RL Lecture 07 32

Summary of DQN Working Principle (2)

Memory

Mini-Batch

Target

Parameter

Fig. 1.10: DQN structure from a bird’s-eye perspective (derivative work of Fig. ??
and wikipedia.org, CC0 1.0)

Paul Swoboda RL Lecture 07 33

https://commons.wikimedia.org/wiki/File:Multi-Layer_Neural_Network-Vector.svg?uselang=de
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Algorithmic Implementation: DQN

input: a differentiable function q̂ : Rκ × Rζ → R (including feature eng.)
parameter: ε ∈ {R|0 < ε << 1}, update factor kw ∈ {N|1 ≤ kw}
init: weights w = w− ∈ Rζ arbitrarily, memory D with certain capacity
for j = 1, 2, . . . episodes do

initialize s0;
for k = 0, 1, 2 . . . time steps do

ak ← apply action ε-greedy w.r.t q̂(sk, ·,w);
observe sk+1 and rk+1;
store tuple ⟨sk, ak, rk+1, sk+1⟩ in D;
sample mini-batch Db from D (after initial memory warmup);
for i = 1, . . . , b samples do calculate Q-targets

if si+1 is terminal then yi = ri+1;
else yi = ri+1 + γmaxa q̂(si+1, a,w

−);
fit w on loss L(w) = [yi − q̂(si, ai,w)]2Db

;

if k mod kw = 0 then w− ← w (update target weights);

Algo. 1.5: DQN (output: parameter vector w for q̂∗)

Paul Swoboda RL Lecture 07 34

Remarks on DQN Implementation

▶ General framework is based on V. Mnih et al., Human-level control
through deep reinforcement learning, Nature, pp. 529-533, 2015.

▶ Often ’deep’ artificial neural networks are used as function
approximation for DQN.
▶ Nevertheless, other model topologies are fully conceivable.

▶ The fit of w on loss L is an intermediate supervised learning step.
▶ Comes with degrees of freedom regarding solver choice.
▶ Has own optimization parameters which are not depicted here in details

(many tuning options).

▶ Mini-batch sampling from D is often randomly distributed.
▶ Nevertheless, guided sampling with useful distributions for a specific

control task can be beneficial

▶ Likewise the simple ε-greedy approach can be extended.
▶ Often a scheduled/annealed trajectory εk is used.

Paul Swoboda RL Lecture 07 35

DQN Application Example: Atari Games (1)

▶ End-to-end learning of q̂(x, u) from monitor pixels x
▶ Feature engineering obtains stacking of raw pixes from last 4 frames
▶ Actions u are 18 possible joystick/button combinations
▶ Reward is the change of highscore per step
▶ Interesting lecture from V. Minh with more details: YouTube

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

DQN in Atari

End-to-end learning of values Q(s, a) from pixels s

Input state s is stack of raw pixels from last 4 frames

Output is Q(s, a) for 18 joystick/button positions

Reward is change in score for that step

Network architecture and hyperparameters fixed across all games
Fig. 1.11: Network architecture overview used for DQN in Atari games (source:

D. Silver, Reinforcement learning, 2016. CC BY-NC 4.0)

Paul Swoboda RL Lecture 07 36

https://www.youtube.com/watch?v=fevMOp5TDQs&t=1499s
https://creativecommons.org/licenses/by-nc/4.0

DQN Application Example: Atari Games (2)

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

DQN Results in Atari

Fig. 1.12: DQN performance results in Atari games against human performance
(source: D. Silver, Reinforcement learning, 2016. CC BY-NC 4.0)

Paul Swoboda RL Lecture 07 37

https://creativecommons.org/licenses/by-nc/4.0

	Lecture 07: Miscellana & On-Policy Prediction with Function Approximation
	Gradient-Based Prediction
	Batch Learning
	On-Policy Control With (Semi-)Gradients
	Deep Q-Networks (DQN)

