Lecture 07: On-Policy Prediction

with Function Approximation

Paul Swoboda

UNIVERSITAT
s MANNHEIM

Paul Swoboda RL Lecture 07 1

https://ei.uni-paderborn.de/lea/

Table of Contents

@ Gradient-Based Prediction

Paul Swoboda RL Lecture 07 2

Prediction Framework with Function Approximation (1)

» Estimate true value function v;(x) using a parametrizable
approximate value function

(2, w) ~ v (x). (1.1)

» The state & might be enhanced by feature engineering (i.e., additional
signal inputs are derived in the feature vector £ = f(x) € R").

» Above, w € RS is the parameter vector.
> Typically, ¢ << |X| applies (otherwise approximation is pointless).

Generalization
Due to the usage of function approximation one incremental learning step
changes at least one element w; € w which

> affects the estimated value of many states compared to

» the tabular case where one update step affects only one state.

Paul Swoboda RL Lecture 07 3

Types of Action-Value Function Approximation

Fig. 1.1: Possible function approximation settings for discrete actions

» Left: one function with both states and actions as input

> Middle: one function with ¢ = 1,2, ... outputs covering the action
space (e.g., ANN with appropriate output layer)

» Right: multiple (sub-)functions one for each possible action u; (e.g.,
multitude of linear approximators in small action spaces)

Paul Swoboda RL Lecture 07 4

Prediction Framework with Function Approximation (2)

» In the tabular case a specific prediction objective was not needed:

» The learned value function could exactly match the true value.
» The value estimate at each state was decoupled from other states.

» Due to generalization impact we need to define an accuracy metric on
the entire state space (the RL prediction goal):

Definition 1.1: Mean Squared Value Error

The RL prediction objective is defined as the mean squared value error

VE(w) = /X (@) [on () — (&, w)]? (12)

with () € {R|u(x) > 0} being a state distribution weight with [, = 1.

> Practical note: As the true value v.(x) is most likely unknown in
most tasks, (1.2) cannot be computed exactly but only estimated.

Paul Swoboda RL Lecture 07 5

Simplification for On-Policy Prediction

For prediction we focus entirely on the on-policy case.

Hence, y(x) is the on-policy distribution under .

For practical usage we can therefore approximate the weighted
integration over the entire state space X in (1.2) by the sampled
MSE of the visited state trajectory:

VE(w) ~ J(w) = > [or(zk) — 0(E, w))? (1.3)
k

If we would perform off-policy prediction we have to transform the
sampled value (estimates) from the behavior to the target policy.
Likewise when doing this for tabular methods, this increases the
prediction variance.

In combination with generalization errors due to function
approximation, the overall risk of diverging is significantly higher
compared to the on-policy case.

Paul Swoboda RL Lecture 07

Prediction Challenges with Function Approximation

Summarizing the two previous slides:

» The goal is to find
w”* = arg min J(w). (1.4)

w
First challenge:

» Function approximator 0(&,w) requires certain form to fit v, (x).

Second challenge:

» If (&, w) is linear: convex optimization problem.

» The nice case: the local optimum equals the global optimum and is
uniquely discoverable. But requires linear feature dependence.

» If 0(&,w) is non-linear: non-linear optimization problem.

» The ugly case: possible multitude of local optima with no guarantee to
locate the global one.

» Depending on optimization strategy the RL algorithm may diverge.

Paul Swoboda RL Lecture 07

Updating the Parameter Vector to Find (Local) Optimum

Transferring the idea of incremental learning steps from the tabular case
0(s) < 0(s) + afvz(s) — 0(s)] (1.5)
to function approximation using a gradient descent update:

w < w — aVy,J(w). (1.6)

» The search direction is the prediction objective gradient V,,J(w).
» The learning rate o determines the step size of one update.

Paul Swoboda RL Lecture 07 8

How to Retrieve the Gradient?

» Full calculus of V,J(w):

» Batch evaluation on sampled
sequence Sg, S1, S2, ... might be
computationally costly.

» In RL control: since m changes
over time, past data in batch is
not fully representative.

» SGD: sample gradient at a given
state sj and parameter vector wy:

VuJ(w) = — [vr(sk) — 0(8k, wy)]
Fig. 1.2: Exemplary optimization paths
for (stochastic) gradient descent
(derivative work of www.wikipedia.org, B Regular gradient descent leads to
CCo0 1.0) same result as SGD in expectation
(averaging of samples).

Paul Swoboda RL Lecture 07

https://commons.wikimedia.org/wiki/File:Gradient_descent.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Asking an Expert on Convergence Properties

The optimization task could be
» non-linear,
» multidimensional and
P non-stationary.
Applying gradient descent to such a problem requires:
» Enormous luck to initialize wy close to the global optimum.
» Cautious tuning of « to prevent diverging or chattering of wy.

o

Applying gradient descent on
nonlinear, nonstationary problems?

Paul Swoboda RL Lecture 07 10

SGD-Based Learning Step

Despite the possible problems we apply SGD-based learning due to its
striking simplicity (and wide distribution in the literature):

Gradient-based parameter update

To optimize J(w) by an appropriate function approximator 0(8, w) the
incremental learning update per step is

W] = Wi, + & [UW(Sk) = f)(gk, wk)] Vw@(é’m wk) (17)

Nevertheless, the true update target v, (sy) is often unknown due to
P noise or
» the learning process itself (e.g. bootstrapping estimates).

Paul Swoboda RL Lecture 07 11

Generalization Example for Parameter Update

» Function approximation v(§, w) = [wl Wy wg] [51 S9 1]T

> Initial parameter: w] = [I 1 1], ve(so=[1 1]") =1, a=0.1
> New parameter set:
w] = w{ + a [vx(s0) — (S0, wo)] (Ve (S0, wo))"

=1 1 1]401(1-3)[1 1 1]=[0.8 0.8 0.8]

Fig. 1.3: Exemplary state-value estimation update with linear regression model
Paul Swoboda RL Lecture 07 12

Algorithmic Implementation: Gradient Monte Carlo

Prediction

» Direct transfer from tabular case to function approximation

» Update target becomes the sampled return v, (sx) ~ gx

input: a policy 7 to be evaluated, a feature representation § = f(s)
input: a differentiable function © : R® x RS — R
parameter: step size o € {R|0 < a < 1}
init: value-function weights w € RS arbitrarily
for j =1,2,..., episodes do

generate an episode following 7 sg,ag,71,...,57 ;

calculate every-visit return g;

for k=0,1,...,T — 1 time steps do

W 4w+ a gy — 0(8k, w)] Vo (Sk, w);

Algo. 1.1: Every-visit gradient MC prediction(output: parameter vector
w for 0r)

Paul Swoboda RL Lecture 07 13

Semi-Gradient Methods

> If bootstrapping is applied, the true target v,(sy) is approximated by
a target depending on the estimate 0(8, w).
> If 0(8g,w) does not perfectly fit v (sg), the update target becomes a
biased estimate of v, (sy).
> For example, in the TD(0) case applying SGD we receive:

va(8) =1+ (8, w),

J(w) ~ Z [Frei1 + 70 (Sk41, wi) — 0(8k, wi)]”,
k (1.8)
V(W) = [rgr1 + Y0(Sk41, W) — 9(Sg, wy)]
Ve Y0(8k41, wi) — 0(8k, wy)] .

Semi-gradient methods

When bootstrapping is applied, the gradient does not take into account
any gradient component of the bootstrapped target estimate.

P> Motivation: speed up gradient calculation while assuming that the
simplification error is small (e.g. due to discounting).

Paul Swoboda RL Lecture 07 14

Algorithmic Implementation: Semi-Gradient TD(0)

The semi-gradient of J(w) for TD(0) from prev. slide is then

Vwd (W) & = [rg1 + 70(8k41, wk) — 0(8k, wk)] Vwd (8, wr). (1.9)

input: a policy 7 to be evaluated, a feature representation § = f(s)
input: a differentiable function ¢ : R* x RS — R with 9(37,:) =0
parameter: step size o € {R|0 < a < 1}
init: value-function weights w € RS arbitrarily
for j =1,2,... episodes do
initialize sq;
for k=0,1,2... time steps do
ay, < apply action from 7(sy);
observe sy41 and rgqq;
W 4 W+ arpr1 + Y0(Skr1, w) — 0(8k, w)] V0 (S, w);
exit loop if s;41 is terminal;

Algo. 1.2: Semi-gradient TD(0) (output: parameter vector w for)

Paul Swoboda RL Lecture 07

15

Table of Contents

© Batch Learning

Paul Swoboda RL Lecture 07 16

Background and Motivation

» As already discussed in the tabular case: incremental learning is not
data efficient (cf. example Fig. 7).
» During one incremental learning step we are not utilizing the given

information to the maximum possible extent.
» Also applies to SGD-based updates with function approximation.

» Alternative: batch learning methods
» Find w™ given a fixed, consistent data set D

> D= {<CB0,U7r(33O)> s <w1a7)7r(331)> y e }

» What batch learning options do we have?
> Experience replay (cf. planning and learning lecture e.g. Fig. ??)
> If 0(2,w) is linear: closed-form least-squares solution

Paul Swoboda RL Lecture 07

17

SGD with Experience Replay

Based on the data set
D = {{zo, va(z0)) , (T1, x(Z1)) -}

repeat:
© Sample uniformly i =1, ..., b state-value pairs from experience
(so-called mini batch)

(i, vr(xy)) ~ D.
@ Apply (semi) SGD update step:

Wiy = Wi + U7r mz) - (mh wz)] vwv(w’u wz)

@\Q
M@

=1

» Universally applicable: ©(&,w) can be any differentiable function.
» The usual technical tuning requirements regarding « apply.
» True target v () is usually approximated by MC or TD targets.

Paul Swoboda RL Lecture 07 18

(Ordinary) Least Squares

Assuming the following applies:
» (&, w) is a linear estimator and

> D a fixed, representative data set following the on-policy distribution.

Then, minimizing the quadratic cost function (1.3) becomes

» an ordinary least squares (OLS) / linear regression problem.

We focus on the combination of OLS and TD(0) (so-called LSTD), but
the following can be equally extended to n-step learning or MC.

» Rewriting J(w) from (1.3) using linear approximation TD(0) target:

On(®k) & That + VO (@pg1) = T + VL W (1.10)
2
Jw) = [onlay) = 0(@r, w)* = 3 [reer — (& — 1@) w]
k k

Paul Swoboda RL Lecture 07 19

Table of Contents

@ Gradient-Based Prediction
© Batch Learning
© On-Policy Control With (Semi-)Gradients

@ Deep Q-Networks (DQN)

Paul Swoboda RL Lecture 07 20

Gradient-Based Action-Value Learning

» Transferring the objective J(w) from on-policy prediction to control
yields:

J(w) = Z [@r (S, ar) — G(sk, ap, w)]2. (1.11)
k

» Analogous, the (semi-)gradient-based parameter update from (1.7) is
also applied to action values:

W1 = Wk + & [¢r(Sk, ag) — §(Sk, ag, wi)] Vw((Sk, ax, wy). (1.12)

» Depending on the control approach, the true target ¢ (s, ar) is
approximated by:
» Monte Carlo: full episodic return ¢, (sk,ax) =~ g,
» Sarsa: one-step bootstrapped estimate
Gr(Sks @) = T1 + YG(Sk+1, k1, W),
» n-step Sarsa:
Gr(8ky ak) = Trg 1 Y kg2t 7" T+ G(Skns Qgn, Whpn—1).

Paul Swoboda RL Lecture 07 21

Houston: We have a Problem (1)

» Recall tabular policy improvement theorem guarantees to find a
globally better or equally good policy in each update step.

» With parameter updates (1.12) generalization applies.

» Hence, when reacting to one specific state-action transition other
parts of the state-action space within ¢ are affected too.

Loss of policy improvement theorem

» Is not applicable with function
approximation!

> We may improve and impair the
Fig. 1.4: GPI policy at the same time!

Paul Swoboda RL Lecture 07 22

We have a Problem (2)

7000
6000

P01 APPOTRRSUPIVOITITITY EEPO I

=
=}
=)
=

3000

Avergae rewrds per test
Averyae reunds per test

2000

1000

epoch epoch
Fig. 1.5: Learning curves with drastic performance dips when applying Sarsa with
function approximation. Left: Atari Breakout, right: Atari Seaquest (source: D.
Zhao et al., Deep reinforcement learning with experience replay based on SARSA,
IEEE Symposium Series on Computational Intelligence, 2016)

Paul Swoboda RL Lecture 07 23

Algorithmic Implementation: Gradient MC Control

» Direct transfer from tabular case to function approximation
> Update target becomes the sampled return ¢ (sg, ar) = g

> If operating e-greedy on §: baseline policy (given by wg) must
(successfully) terminate the episode!

input: a differentiable function ¢ : R* x R¢ — R
input: a policy 7 (only if estimating ¢,)
parameter: step size a € {RI0 < a <1}, e € {R|0 <e << 1}
init: parameter vector w € R arbitrarily
for j =1,2,..., episodes do
generate episode following 7 or e-greedy on §: sg,ag,71,--.,ST ;
calculate every-visit return g;
for k=0,1,...,T — 1 time steps do
w 4 w+ algr — ¢(Sk, ag, w)] Vwq(sk, ag, w);

Algo. 1.3: Every-visit gradient MC-based action-value estimation (out-
put: parameter vector w for ¢, or ¢*)

Paul Swoboda RL Lecture 07 24

Algorithmic Implementation: Semi-Gradient Sarsa

input: a differentiable function ¢ : R® x R¢ — R
input: a policy 7 (only if estimating ¢,)
parameter: step size o € {R|0 < a < 1}, € € {R|0 < e << 1}
init: parameter vector w € RS arbitrarily
for j =1,2,... episodes do
initialize sgq;
for k=0,1,2... time steps do
uy, < apply action from 7(s) or e-greedy on §(sg, -, w);
observe sg41 and 7541;
if sx11 is terminal then
w4 W+ a[rgr1 — §(Sk, ag, W) Vi d(Sk, ar, w);
go to next episode;
choose u' from m(sgy1) or e-greedy on §(Sg41,-, w);
w
w+ o [rk+1 + ’y(j(skJrl’ (1/, ’UJ) - Q(Ska ag, w)] vw(j(ska ag, ’UJ);
Algo. 1.4: Semi-gradient Sarsa action-value estimation (output: pa-
rameter vector w for ¢, or ¢*)

Paul Swoboda RL Lecture 07 25

Sarsa Application Example: Mountain Car (1)

Fig. 1.6: Classic RL control example:

mountain car (derivative work based

on https://github.com/openai/gym,
MIT license)

Paul Swoboda

Two cont. states: position, velocity
One discrete action: acceleration
given by {left, none, right}

r, = —1, i.e., goal is to terminate
episode as quick as possible
Episode terminates when car
reaches the flag (or max steps)
Simplified longitudinal car physics
with state constraints

» Position initialized randomly within

valley, zero initial velocity

Car is underpowered and requires
swing-up

RL Lecture 07 26

https://github.com/openai/gym

Sarsa Application Example: Mountain Car (2)

MOUNTAIN CAR Goal

2%
e

g i
4
AT i i et
/ i fimman
) fihgs DR
L G
. s o
P,

"‘%5?:'2'"

iR
FEasi)
e

=
ot
=

2
=

2
7

<5

s

=
2

2

=5

7
=
e

=

%

v
=
=

2%
=
=
=

=
i
==

+Z

7=
os
5

22

=
27
2

55
S
=
=

&

=%

e

-

et
=

%

Fig. 1.7: Cost-to-go function — max, ¢(s, a,w) for mountain car task using linear

approximation with Sarsa and tile coding (source: R. Sutton and G. Barto,
Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

RL Lecture 07

Paul Swoboda

https://creativecommons.org/licenses/by-nc-nd/2.0/

Tile Coding

» Problem space is grouped into (overlapping) partitions / tiles.

» Performs a discretization of the problem space.

» Function approximation serves as interpolation between tiles.

» Find an example here: https://github.com/MeepMoop/tilecoding .

Tilingl —

Tiling 2 e e
T
Continuous Tiling 4 oL ag ol Four active
2D state | I ! s [tiles/features
~ LTI TTST —— overlap the point
pac i /1// i =< | — adaeusedto
Point in Lt ti5rrtTs e represent it
state space ; - M
tobe [EN I Y RN DA B
represented

Fig. 1.8: Tile coding example in 2D (source: R. Sutton and G. Barto,
Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

Paul Swoboda RL Lecture 07 28

https://github.com/MeepMoop/tilecoding
https://creativecommons.org/licenses/by-nc-nd/2.0/

Sarsa Application Example: Mountain Car (3)

1000

Mountain Car “°f
Steps per episode
log scale
averaged over 100 runs 200

100

0 5(30
Episode

Fig. 1.9: Mountain car learning curves with semi-gradient Sarsa for different
learning rates « (source: R. Sutton and G. Barto, Reinforcement learning: an
introduction, 2018, CC BY-NC-ND 2.0)

Paul Swoboda RL Lecture 07 29

https://creativecommons.org/licenses/by-nc-nd/2.0/

Table of Contents

@ Deep Q-Networks (DQN)

Paul Swoboda RL Lecture 07 30

General Background on DQN

» Recall incremental learning step from tabular Q)-learning:

Q(s,a) < 4(s,a) + o [r + ymaxd(s',a) - i(s,a)]
a

» Deep @-networks (DQN) transfer this to an approximate solution:
w=w+« [r + 'ymgxcj(s', a,w) — (s, a,'w)} Vwi(s,a,w). (1.13)

However, instead of using above semi-gradient step-by-step updates, DQN
is characterized by

> an experience replay buffer for batch learning (cf. prev. lectures),

> a separate set of weights w™ for the bootstrapped ()-target.
Motivation behind:

> Efficiently use available data (experience replay).

> Stabilize learning by trying to make targets and feature inputs more
like i.i.d. data from a stationary process (prevent windup of values).

Paul Swoboda RL Lecture 07 31

Summary of DQN Working Principle (1)

Take actions a based on ¢(s,a,w) (e.g., e-greedy).
Store observed tuples (s, a,r, s’) in memory buffer D.

| 2
| 2
» Sample mini-batches Dy from D.
>

Calculate bootstrapped -target with a delayed parameter vector w™
(so-called target network):
4r(s.0) ~ v+ ymaxd(s’, a,w7).

» Optimize MSE loss between above targets and the regular
approximation §(s, a,w) using D

L(w) = [(7" + vmgXQ(s’,a,w_)) — (j(s,a,w)];b i (1.14)

» Update w~ based on w from time to time.

Paul Swoboda RL Lecture 07

Summary of DQN Working Principle (2)

e By

B v B
Parameter S S

qr = G(w

Fig. 1.10: DQN structure from a bird's-eye perspective (derivative work of Fig. 7?7
and wikipedia.org, CCO 1.0)

Paul Swoboda RL Lecture 07 B

https://commons.wikimedia.org/wiki/File:Multi-Layer_Neural_Network-Vector.svg?uselang=de
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Algorithmic Implementation: DQN

input: a differentiable function ¢ : R* x RS — R (including feature eng.)
parameter: ¢ € {R|0 < ¢ << 1}, update factor k,, € {N|1 < k,}
init: weights w = w~ € RS arbitrarily, memory D with certain capacity
for j =1,2,... episodes do
initialize sq;
for k =0,1,2... time steps do
ay < apply action e-greedy w.r.t (s, -, w);
observe si11 and 7541;
store tuple (Sk, ak, rk+1, Sk+1) in D;
sample mini-batch D, from D (after initial memory warmup);
fori=1,...,b samples do calculate ()-targets
if s;41 is terminal then y; = r;11;
else y; = riy1 + ymax, ¢(Si1,a,w™);
fit w on loss L(w) = [y; — §(si, ai, w)|%,;
if & mod k,, =0 then w~ + w (update target weights);

Algo. 1.5: DQN (output: parameter vector w for ¢*)

Paul Swoboda RL Lecture 07 34

Remarks on DQN Implementation

» General framework is based on V. Mnih et al., Human-level control
through deep reinforcement learning, Nature, pp. 529-533, 2015.

» Often 'deep’ artificial neural networks are used as function
approximation for DQN.

» Nevertheless, other model topologies are fully conceivable.
» The fit of w on loss £ is an intermediate supervised learning step.
» Comes with degrees of freedom regarding solver choice.
» Has own optimization parameters which are not depicted here in details
(many tuning options).
» Mini-batch sampling from D is often randomly distributed.

» Nevertheless, guided sampling with useful distributions for a specific
control task can be beneficial

» Likewise the simple e-greedy approach can be extended.
> Often a scheduled/annealed trajectory ¢y is used.

Paul Swoboda RL Lecture 07 85

DQN Application Example: Atari Games (1)

» End-to-end learning of ¢(x,u) from monitor pixels x

Feature engineering obtains stacking of raw pixes from last 4 frames
Actions u are 18 possible joystick/button combinations

Reward is the change of highscore per step

Interesting lecture from V. Minh with more details: YouTube

vvyyvyy

32 4x4 filters Fully-connected linear
output layer

256 hidden units
16 8x8 filters

4x84x84

L[o

Stack of 4 previous] Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Fig. 1.11: Network architecture overview used for DQN in Atari games (source:
D. Silver, Reinforcement learning, 2016. CC BY-NC 4.0)

Paul Swoboda RL Lecture 07 36

https://www.youtube.com/watch?v=fevMOp5TDQs&t=1499s
https://creativecommons.org/licenses/by-nc/4.0

%000€ %000+ %009 %00S %007 %00€ %002 %001 %0
L _-_ __ 1 Il 1 1 1 1]

%0 abusney sewnza
%z || eh3 spenug
%s || sewmern
D e sl svasons
%L][spossisy
%e 1| uewoed ‘s
% [Buimog
J— %2e | una sianog
sz [l _H jsanbeas
N sze [emuen
~— wzw [veny
sy [epy
u vuzs [| Py sany
o o [| 151k dueg
m o%zo | epediueo
wro | puewiwo) seddoy
(9] %o 1| 2om so preziy
G %9 [Hm: 0z smeg
JoAaL-uBwIny Mojsq o | xumisy
o — 2A0qE 10 [oRs-UBWINY JE %9 L L
= oz TS 1ea.0
T s [| Aevo0H 801
+ wze [umoq pue dn
< soc IS [Aaseq Busia
s [| oinpuz
s . w00, I [oiid swiL
(D) 2ol [| Kemaaiy
= sezor [N | ssisen na-Buny
o sezve | wewyueny,
m ot [EZ [sepry weeg
%izs I [ssepenu; eceds
(gv] szer EEE [Buod
X %svi [| puog sawep
E %syL !_H siuusy
wvzz oosebuey
zez [T | seuuny pecy
c owovz I || ynessy
(@) %Lz [[iinust
= 0.2 Y || SWeD S L oweN
= wvoz Y | ooy uowsa
() —— [sudon
O v | 17 [seqwio kzeso
= iy [[sneny
o %eos I | sueroqoy
o %sees I | seuung S
[noreais
< aneh, [uos
| iiequig ospin
=

37

)

NC 4.0

2016. CC BY-

RL Lecture 07

Reinforcement learning,

source: D. Silver,

(

Fig. 1.12: DQN performance results in Atari games against human performance
Paul Swoboda

https://creativecommons.org/licenses/by-nc/4.0

	Lecture 07: Miscellana & On-Policy Prediction with Function Approximation
	Gradient-Based Prediction
	Batch Learning
	On-Policy Control With (Semi-)Gradients
	Deep Q-Networks (DQN)

